Hadronenphysik mit COMPASS

Jan Friedrich

Physik-Department Technische Universität München

für die COMPASS-Kollaboration

Frühjahrstagung der Deutschen Physikalischen Gesellschaft Dresden, 7. März 2013

unterstützt von Maier-Leibnitz-Labor der TU und LMU München, Excellenzcluster "Origin and Structure of the Universe", BMBF

Quanten Chromo Dynamik stark wechselwirkender Teilchen

Hadroneigenschaften auf unterschiedlichen Skalen

- Spinstruktur des Nukleons: longitudinale und transversale Komponenten bei hoher Auflösung $Q^2 > 1 \text{ GeV}^2/c^2$
- Anregungsspektrum der Hadronen: Meson- und Baryonresonanzen bei mittlerem $0.1 < Q^2 < 1 \text{ GeV}^2/c^2$
- Mesoneigenschaften: Pion-Polarisierbarkeit, el.-magn. Kopplungen bei kleinsten $Q^2 < 0.001 \text{ GeV}^2/c^2$

- Streuung hochenergetischer polarisierter Myonen an polarisierten Proton- und Deuteron-Targets
- Diffraktive Streuung von hochenergetischen π , K, p, (\bar{p}) an Protonen
- Hochenergetische Streuung am Coulombfeld schwerer Kerne

mit Strahlenergie 100 – 200 GeV

- Streuung hochenergetischer polarisierter Myonen an polarisierten Proton- und Deuteron-Targets
- Diffraktive Streuung von hochenergetischen π , K, p, (\bar{p}) an Protonen
- Hochenergetische Streuung am Coulombfeld schwerer Kerne

mit Strahlenergie 100 – 200 GeV

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

CCmmon Muon and Proton Apparatus for Structure and Spectroscopy

CERN SPS: 400 GeV Protonen

(5-10 s spills)

- sekundärer Hadronstrahl (π, K, p, p): 2·10⁷ / s Nov. 2004, 2008-09, 2012
- *tertiärer*, polarisierter Myonstrahl: 4.10⁷ / s 2002-04, 2006-07, 2010-11

COMPASS

Experimenteller Aufbau für Myonstrahl

COMPASS

Experimenteller Aufbau für Hadronstrahl

- Strahl π, K, p Identifikation: CEDARs
- SMD vor und hinter dem Target
- Rückstoß-Detektor

$$x_{Bj} = \frac{Q^2}{2M\nu} < 1$$
 Massen-/ Impuls-Bruchteil, der (quasi)elastisch streut
 $z = E_h/\nu$ Energiebruchteil des produzierten Hadrons

Spinzusammensetzung:
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

COMPASS: $\Delta\Sigma = 0.30 \pm 0.01_{stat} \pm 0.02_{evol}$ $Q^2 = 3 (\text{GeV}/c)^2$

Semi-inklusive Asymmetrien

Jan Friedrich — Hadronenphysik mit COMPASS

Semi-inklusive Asymmetrien

Gluon-Polarisation durch Photon-Gluon-Fusion

q = *c* Open-charm, Skala durch *c*-Masse, (Produktion von *D*-Mesonen)

q = u, d high-pT Hadronpaare, $Q^2 > 1$

Technische Universität Müncher

Gluon Polarisation - Open Charm Result

$= -0.08 \pm 0.21 \pm 0.11$

Gluon Polarisation - high- p_T hadron pairs

much larger statistics than in the open charm analysis (*c.a.* 7.3M) perturbative scale is defined by $Q^2 > 1$ (GeV²)

LP

 \mathbf{PGF}

QCDC

$\Delta G/G = 0.125 \pm 0.060 \pm 0.063$		$< x_G >$	$\Delta G/G$
$\langle x_G \rangle = 0.09,$	$\mu^2 = 3 \; ({\rm GeV/c})^2$	$0.07\substack{+0.05\\-0.03}$	$0.147 \pm 0.091 \pm 0.088$
		$0.10\substack{+0.07\\-0.04}$	$0.079 \pm 0.096 \pm 0.081$
		$0.17^{+0.10}_{-0.06}$	$0.185 \pm 0.165 \pm 0.143$

Gluon Polarisation - Result

...weitere Komponenten zum Nukleonspin?

Technische Universität München

COMPASS: volle Strahlzeit 2010 mit transversalem Targetspin

azimutale Asymmetrien in $\phi_h \pm \phi_S$

Collins Asymmetrie

Transversity $\Delta_T q$ und entsprechende Analysierfunktion

Transversity $\Delta_T q$ und entsprechende Analysierfunktion

Sivers Asymmetrie

 k_T des unpolarisierten Quarks im polarisierten Nukleon

Sivers Asymmetrie

k_T des unpolarisierten Quarks im polarisierten Nukleon

Bilanz aus semi-inklusiver polarisierter DIS

• Quarkspinverteilungen Δu positiv, Δd negativ, $\Delta \bar{u}, \Delta \bar{d}, \Delta s \approx 0$

• Gluon Spinbeitrag ΔG klein, Vorzeichen unsicher

 $|\Delta G| < 0.2 - 0.3$

 transversale Freiheitsgrade
 → signifikante Effekte, interessant als Input f
ür Theorie Sivers: Verbindung zum Bahndrehimpuls der Quarks

Untersuchung von Bahndrehimpulskomponenten durch COMPASS II:

GPD's in DVCS: $\vec{\mu} p \rightarrow p \gamma, p \rho$ pol. Drell-Yan: $\pi^- p^{\uparrow} \rightarrow \mu^+ \mu^- X$ HK 42.3 Di 17:30 K. Schmidt

Spektrometrie von Hadronanregungen

Hochenergetische Hadronstreuung:

- Beschreibung durch Regge-Theorie
- ab Energien \sim 100 GeV dominiert Pomeron-Austausch
- nicht-resonante Beiträge: Deck-Amplituden
- Ziel: genaueres Verständnis stark gebundener Zustände

Konstituenten-Quarkmodell: Meson-Spin $\vec{J} = \vec{S} + \vec{L}$ Parität $P = (-1)^{L+1}$ *C*-Parität $C = (-1)^{L+S}$ verbotene J^{PC} : $0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

Hadronanregungen: Experimentelle Methoden

- Suche nach qqg Hybriden
- Meson-Photon-Kopplung
 - el-magn. Übergänge
 - chirale Dynamik
- 3π, πηη, 5π, π*KK*, πη, πγ, ...

zentrale Produktion isoskalarer $X^0(f_0, f_2, \cdots)$

- Suche nach Glueball-Kandidaten
- zugängliche Systeme:

$$\pi^{-}\pi^{+}$$
, $\pi^{0}\pi^{0}$, $\eta\eta$, $K^{-}K^{+}$, $K^{0}K^{0}$

Partialwellenzerlegung - Isobarenmodell

- Zerlegung in 2-Teilchen-Zerfallskette mit Isobaren-Zwischenzuständen
- "Welle": einzelne Kombination von J^{PC} mit Isobaren
- Reichhaltiges Spektrum mit überlappenden / interferierenden Beiträgen

$$\sigma = \sum_{\text{rank}, \epsilon} \left| \sum_{\text{waves}} T(m_X) A_i(\tau, m_X) \right|^2$$

- Phasenbewegung der Resonanzen durch Interferenzen sichtbar
- Phasenraum für 3π : 5-dim., für 5π : 11-dim.

Isobaren für 5π

komplexes Modell: höhere Massen mit Zerfall in schwere Isobare zugänglich

• automatisierte Auswahl der beitragenden Wellen: \sim 300 \rightarrow 32

PWA of π^- Pb $\rightarrow \pi^-\pi^-\pi^+\pi^-\pi^+$ Pb (2004 data)

$$0^{-+}\pi^{-}f_{0}(1500) S$$

$$0^{-+}\rho a_{1}(1260) S$$

$$1^{++}\pi^{-}f_{0}(1370) P$$

$$1^{++}\pi^{-}f_{1}(1285) P$$

$$1^{++}\rho\pi(1300) S$$

$$1^{++}(\pi\pi)sa_{1} D$$

$$2^{-+}\pi^{-}f_{2}(1270) S$$

$$2^{-+}\rho a_{1}(1260) S$$

$$2^{-+}\rho a_{1}(1260) D$$

PWA of π^- Pb $\rightarrow \pi^-\pi^-\pi^+\pi^-\pi^+$ Pb (2004 data)

Einführung Setup Longitudinal Transversal Spektrometrie Primakoff-Reaktionen Zusammenfassung

Technische Universität München

Sentrale Produktion: $pp ightarrow p_{fast} K^+ K^- p_{slow}$

Technische Universität München

Phasenraum durch 2 Winkel definiert

\bigotimes Zentrale Produktion: $pp o p_{\mathit{fast}} K^+ K^- p_{\mathit{slow}}$

- Klare Signatur der bekannten $f_0(1500)$ und $f_0(1710)$
- Hinweis auf f₀(1370)?
- Glueball-Kandidat
- Systematik zu untersuchen: Resonanz-BW-Parametrisierung, Untergrundbeschreibung

technisch (noch) anspruchsvoller, PWA in Vorbereitung

ПП

Technische Universität München

technisch (noch) anspruchsvoller, PWA in Vorbereitung

ПП

Technische Universität München

Elektromagnetischer Übergang

- Operator wohlverstanden
- Bestimmung der internen Struktur / Wellenfunktionen
- Vorhersagen z.B. VMD

PWA in Massenbins ($t' < 0.001 \, (\text{GeV}/c)^2$)

Technische Universität München

Technische Universität Müncher

Setup Longitudinal Transversal Spektrometrie Primakoff-Reaktionen Zusammenfassung

Einführung

Dipol E1, M1-Kopplungen bei niedriger Energie

Veranschaulichung der Messung

- typische Feldstärke $r = 5R_{Ni}$: $E \sim 300 \text{ kV/fm}$
- Äquivalent-Photonen-Näherung (Weizsäcker-Williams): Bremsstrahlung verknüpft mit Pion (oder Myon) Compton-Streuung
- WQ wird i.a. reduziert
- Ladungstrennung (für α_{π}^{ChPT}) $\sim 10^{-5} \, \text{fm} \cdot e$

Pion-Polarisierbarkeit: Datenlage vor COMPASS

Pion-Polarisierbarkeit: COMPASS Messung

Technische Universität München

Systematik durch Kontroll-Messungen mit Myonstrahl

Einordnung des COMPASS-Resultats

zur Pion-Polarisierbarkeit

- Das COMPASS-Resultat weicht sigifikant von den fr
 üheren Messungen ab
- Gute Übereinstimmung mit der ChPT-Vorhersage

Zusammenfassung

- zahlreiche wichtige Beiträge zur Nukleon-Spinstruktur
 - Gluonbeitrag zum Nukleonspin ist klein
 - präzise Information zur transversalen Spinstruktur
 - Bahndrehimpulsbeiträge \rightarrow Messungen in COMPASS II
- Hadron-Resonanzspektrum
 - weltweit größtes Datensample für zahlreiche Endzustände bis zu ×50
 - diffraktiv: Untersuchung des gesamten Mesonspektrums bis ca. 2.5 GeV, Klärung offener Fragen zu stark gebundenen Zuständen
 - zentrale Produktion: Suche nach Gluebällen, f₀(1370)?
 - \rightarrow gekoppelte $\pi\pi KK$ Analyse
- Primakoff-Prozesse
 - genaueste Bestimmung der Pion-Polarisierbarkeit

 $\alpha_{\pi} = (1.9 \pm 0.7 \pm 0.8) \cdot 10^{-4} \, \text{fm}^3$

 \rightarrow weitere Präzisionsbestimmung von $\alpha_{\pi}, \beta_{\pi}, \alpha_{K}$ mit COMPASS 2012 Daten

- Bestimmung radiativer Breiten von Mesonresonanzen, erstmalig von $\Gamma(\pi_2(1670) \rightarrow \pi\gamma) = 153 \pm 10 \pm 23$ keV (vorl.)
- weitere Tests von chiraler Störungsrechnung