

Das MESA Projekt

Mainz Energy recovering Superconducting Accelerator:

Ein supraleitender Elektronenbeschleuniger mit Energierückgewinnung für die Teilchen- und Kernphysik

> Kurt Aulenbacher für das MESA-Projektteam

Inhalt

- Projektüberblick : Beschleuniger und Experimente
- F&E Bereich: SRF-Technologie
- F&E Bereich: Strahldynamik/Lattice
- Ausblick

MESA: Rahmenbedingungen

MESA Beschleuniger: Motivation

- Neuer und innovativer Beschleuniger soll neuartige Experimente erlauben
- Niedrige Energie (100-200MeV) → realisierbare Investitions- und Laufkosten!
- MAMI Beschleunigerteam ist unverzichtbare Basis für F&E
- Projekt macht Beschleunigerphysik attraktiv für Studenten & Nachwuchswiss.

Zusatzforderung: MESA sollte Vorteile im Verhältnis zu bestehenden kleinen c.w. Beschleunigern bieten können.

Aber wie?

• Nutze seither (> 2000) erzielte Fortschritte der Beschleunigerphysik

- 1. Energy Recovery Linac (ERL)
- 2. Mehr als verdoppelte Gradienten in c.w. operierenden SRF-Systemen

MESA: Das Konzept

PS: Photoguelle-1: 200keV polarisiert (Strahlstrom 0.15mA "External Beam mode" (EB)) Photoquelle-2: 200keV, unpolarisiert (Strahlstrom 10mA "Energy Recov. Linac Mode" (ERL)) IN: 5 MeV – normalleitender Injektor SC: 4 Supraleitende Kavitäten Energiegewinn: 50 MeV pro Durchlauf. RC 1-3 Rezirkulationen für EB-Betrieb Orbit 1 gemeinsam ERL und EB, Orbit 2 separat für ERL and EB PIT: Pseudo Internes Target (ERL-experiment) PV: Paritätsverletzungs-Experiment (EB-mode) DU: 5 MeV beam dump in ERL-mode

Existierende Abschirmwände : 2-3m Schwerbeton

Strahlparameter:

1.3 GHz c.w.

EB-mode: 150 μA, 200 MeV spinpolarisiert (Flüssig Wasserstofftarget L~10³⁹) ERL-mode: 10mA, 100 MeV unpolarized beam (Pseudo-Internes Target, L~10³⁵)

Ein mögliches Arrangement

Ralf Eichhorn

Horizontale Begrenzung der Orbits kann durch vertikale Anordnung "a la CEBAF" gemildert werden!

DPG Tagung Dresden 2013

MESA –"Integration"

V. Bechthold/R. Heine

Angestrebte Strahlparameter:

- 1.) EB-mode Externer spin-polarisierter c.w. Strahl mit 200 MeV
- 2.) ERL-mode: 10mA at 100 MeV (Pseudo Internes Target)

Forschung:

- Beschleunigerphysik: Erster supraleitender multiturn ERL
- → Teststand für Elektronenbeschleuniger von Kollidern (LHeC, eRHIC)
- Hadronenphysik, Kernphysik
- → Astrophysik, Neutronskins, Formfaktor, etc....

Welche über Beschleuniger-, Kern- und Hadronenphysik hinausweisenden Experimente werden außerdem möglich ?

Präzisionsmessung des elektroschwachen Mischungswinkels bei kleinem Q²

Rot: existierende Resultate, Blau: Geplante bzw. In Auswertung befindliche Experimente

150 μA Strahlstrom , 60cm lq. H2,Strahlpol: 85%.
10000 h Datennahme (~13-15000 h Laufzeit)
Hohe Genauigkeit der Pol-Messung: (ΔP/P=0.5% !!)
Extreme Anforderung an Kontrolle der HC-Strahlschwankungen!

θ _z uis[10 ^{,3}]	_			beam current = target length =	150 μA 60 cm	
	~	Q-wea	(projected)			
		Δsin	θ _w = 3.6 10 ⁻⁴	(0.15 %)		
	-	Total	Ļ			
	-		Stat.+ Syst.		_	
	Beam en	ergy and luminosity		>		
	needs f	urther optimization	e.m. FF	A		
				Polarization	<u> </u>	
10 ⁻⁴						
1	00	150 20	00	250 F	300 /MeV	
S. Baunack, D. Becker and P. Larin beam more						

E _{Beam}	200 MeV	
Q²/θ _e	0.0048 GeV ² /20°	
Time/current/target	10000h/150µA/60cm	
A _{phys}	-20.25 ppb	
ΔA _{tot}	0.34 ppb (1.7 %)	
ΔA _{stat}	0.25 ppb	
ΔA _{sys}	0.19 ppb (0.9%)	
Polarization	(85 ± 0.5) %	
Rate	0.44 10 ¹² Hz	
$\Delta sin^2 \theta_W stat$	2.8 10-4	
$\Delta sin^2 \theta_{W tot}$	3.6 10 ⁻⁴ (0.15 %)	

\rightarrow ~4000h/Jahr Laufzeit

ightarrow Beschleuniger muss im Hinblick auf Zuverlässigkeit und Stabilität optimiert werden

→ Paritätsverletzung ist Hauptnutzer von MESA! ←

MESA im ERL-modus : Pseudo Interne Targets

Ein internes Target ohne Fenster kann in einen Speicherring oder ERL integriert werden

Aber: Bei niedrigen Energien <1GeV ist die Aufstreuung groß & $\sim 10^5$ Passagen pro Sekunde \rightarrow Kleine Lebensdauer der gespeicherten Ladung.

In einem ERL passieren die Teilchen das Target nur einmal (Pseudo Internal Target, PIT)

→ Stationärer Zustand mit optimalen Untergrundverhältnissen möglich

ERL/PIT: Ein neues Regime bei E<1GeV

Target dichte N=2*10¹⁸ atoms/cm⁻² (3.2 μ g/cm², 5*10⁻⁸ X₀) \rightarrow I₀=10⁻² A: L= 1.2*10³⁵ cm⁻²s⁻¹

- \rightarrow (mittlerer) Enereverlust (Ionisation): ~ 17eV
- \rightarrow RMS Streuwinkel (Vielfachstreuung): 10µrad
- → Single pass Strahlverschlechterung ist akzeptabel

Bei Bunchladung 7.7pC (10mA): $\varepsilon_{norm} \approx 1 \mu m$

Strahldurchmesser prop. der strahloptischen Funktion β :

$$\mathbf{r}_{_{\text{beam}}}^2(z) = \varepsilon_{_{Geo}} * \beta(z)$$

mit
$$\varepsilon_{\text{Geo}} = \frac{\varepsilon_{\text{Norm}}}{\sqrt{\gamma^2 - 1}} \implies \varepsilon_{\text{Geo}}(100 \text{MeV}) \sim 5 \text{nm}.$$

In der feldfreien Region um den Punkt $z^* = 0$

$$\beta(z) = \beta(z^*) + \frac{z^2}{\beta(z^*)} = \beta^* (1 + (z/\beta^*)^2) \text{ wähle: } \beta^* = 1m$$

 \Rightarrow Maximaler Strahldurchmesser ≤ 0.2 mm ($z = \pm 1$ m)

PRISMA

- Wand und Vielfachstreung streuung minimiert & (bei H2-Target) keine Neutronen
 → optimales S/U
- Wg. Hohem Strahlstrom trotzdem L>10³⁵
 - ightarrow auch kleine Produktionsquerschnitte sind zugänglich

Vorschlag von Heinemayer et al. (2007): arXiv:0705.4056v2 Benutze ein PIT am ERL um 'dark matter' zu suchen. Björken (2009): Anomalien auch durch neue U1-Eichbosonen zu erklären: "Dunkle Photonen"

- Wand und Vielfachstreung streuung minimiert & (bei H2-Target) keine Neutronen
 → optimales S/U
- Wg. Hohem Strahlstrom trotzdem L>10³⁵
 - ightarrow auch kleine Produktionsquerschnitte sind zugänglich

Vorschlag von Heinemayer et al. (2007): arXiv:0705.4056v2 Benutze ein PIT am ERL um 'dark matter' zu suchen. Björken (2009): Anomalien auch durch neue U1-Eichbosonen zu erklären: "Dunkle Photonen"

Chr. Morgenstern (1909):

" Korff erfindet die Tag/Nachtlampe, die einmal angezündet, selbst den hellsten Tag in dunkle Nacht verwandelt...."

1.) 'Anomalien'astrophysikalischer Beobachtungen - and andere Abweichungen von SM-Erwartungen, z.B., (g-2)_u wollen erklärt werden:

Ein Ansatz: Das 'dark photon' : U1 Eichboson A' (a.k.a. 'U-boson') mit Masse m_{A'} <1GeV; Kopplung ϵ an geladenen 'sichtbare' Teilchen via 'kinetic mixing')

Strahl Energie ERL/EB [MeV]	105/155 (105/205)	
Strahlbetriebsmodus	1300 MHz, c.w.	
Elektronenquellen	 Polarisiert: NEA GaAsP/GaAs superlattice, 200keV Unpolarisiert KCsSb, 200keV 	
Bunch Ladung EB/ERL [pC]	0.15/0.77 (0.15/7.7) 7.7pC= <mark>10mA</mark> @1300MHz	
Norm. Emittanz EB/ERL [µm]	0.2/<1 (0.2/<1)	
Spin Polarisation (nur EB-mode)	> 0.85	
Strahl Rezirkulationen	2 (<mark>3</mark>)	
Strahlleistung am Exp. ERL/EB [kW]	100/22.5 (1050/30)	
Installierte R.fLeistung [kW]	140 (180)	

Warum zwei Ausbaustufen für MESA?

Physik:

- Injektor
- BBU Instabilität
- Rezirkulator (Lattice) Design

Technologie:

- Kryogenische Infrastruktur
- Hauptbeschleuniger: Kryomodule

Einschränkungen durch Budget und verfügbaren Raum. Außerdem: ambitionierter Zeitplan!

Injektor-Linac (ILAC)

Design: R.Heine, basierend auf Th. Weis

- Skalierte Version des MAMI-ILAC: 2.5GHz \rightarrow 1,3GHz.
- 96 KW RF Leistung (Inklusive 50kW beam loading)
- T=5MeV, $\Delta \psi_{100\%} < \pm 2.3^{\circ}$ $\Delta E/E_{\rm rms} = 0.01\%$
- Graded beta + SRF-Modul: ("Hybrid") ähnl. Parameter mit 7,5m und 75kW

Vorteile NC-ILAC:

Überschaubare Komplexität, leichte Wartbarkeit, keine kryogenische Last, Fehlertoleranz ILAC ist bereits für Ausbaustufe-2 Parameter ausgelegt.

25.11.2011

Echte c.w.-operation mit SRF: CEBAF (1.5GHz), ELBE(1.3GHZ), S-DALINAC (3GHz)

Nicht : E-XFEL, FLASH, TESLA/ILC. (>30MV/m möglich)

c.w. operation erzwingt reduzierte Gradienten (<20MV/m) wg. kont. Wärmeentwicklung

Fig. 1. Three-dimensional drawing of the ELBE cryomodule.

J. Teichert et al. NIMA 557 (2006) 239

"Rossendorf" – Module werden von Industrie angeboten. Kosten & Lieferzeit sind einigermassen vorhersagbar Anforderung: Limitierte Kryoleistung erfordert $Q_0=10^{10}$ bei 14MeV/m

Kryomodule und BBU

Gekoppelte Resonatoren besitzen Higher order modes (HOMs) HOM's z.B. als TM11-Deflector Moden. \rightarrow BBU- Instabilität, wenn Strahlstrom > I_s In REZIRKULIERENDEN Linacs: Feedback-Schleife! \rightarrow Vereinfachte Formel

$$I_{s} = -\frac{2c^{2}}{e\left(\frac{R}{Q}\right)_{HOM}}Q_{HOM}\omega_{HOM}}\frac{1}{T_{12}\sin(\omega_{HOM}t_{r})}$$

 T_{12} = Abbildung von Winkel nach Ort

 $t_r = Rezirkulationszeit$

Allgemeine Ableitung für ERL's G.H. Hoffstaetter, I. Bazarov: PRSTAB 7 054401 (2004)

Kryomodule und BBU

$$I_{T} = -\frac{2c^{2}}{e\left(\frac{R}{Q}\right)_{HOM}}Q_{HOM}\omega_{HOM}}\frac{1}{T_{12}\sin(\omega_{HOM}t_{r})}$$

 T_{12} = HorizontaleAbbildung von Winkel nach Ort

 T_{34} = Vertikal, T_{56} = Longitudinal (Energie nach Zeit)

 $t_r = Rezirkulationszeit$

Hochstrom- Rezirkulatoren benötigen:

- Gute HOM Dämpfung (TESLA-Kavitäten nur bedingt geeignet!)
- Flexible Rezirkulationsoptik zur Optimierung von T_{12} , T_{34} aber evtl. auch T_{56}

Schlußfolgerungen:

Der erste Punkt spricht für die Fertigung eines "Nicht-Tesla"-Kryomoduls

 \rightarrow Aber: Kosten, Zeitplan?

Der zweite Punkt spricht eher gegen einen polytronartiges lattice (Segmentmagnete)

 \rightarrow Aber: Polytronrezirkulator ist kompakter, Stabilitätsvorteile

Referenz-Plan: MESA : TESLA/Rossendorf Module ("Ausbaustufe-1": limitierter Strom) Alternativ-Plan: Nachbau und/oder Modifikation einer HOM-gedämpften Kavität & Kryomodul (z.B. DICC 1300 MHz, BNL 700MHz) zusammen mit Partnern aus Großforschung. Option nur noch 2013 "offen" → Überspringen von Stufe-1!

Strahldynamik: Lattices

Bild: "Vertikal gestapelte" Rezirkulatoren a la CEBAF

- 1.) "CEBAF-artiges" lattice: Identische 180 Grad Ablenker möglich,
- ABER vertikale Dispersion schwieriger kontrollierbar als bei großen Rezirkulatoren 2.) "Darmstadt-artiges"-Lattice: Ebenes lattice.
- ABER: 3 verschiedene 180 Grad Ablenker, aber gedrängterer Aufbau
- 3.) "Mainz-artiges" Polytron-Lattice: Kompakter, als 2) & inhärente Stabilität
- ABER: komplexes Magnetdesign & strahloptisch weniger flexibel!

"Nullte-Ordnung" (Sollbahn+realistische Dimensionen) Pläne werden erstellt (bis 5/2013) Erste Ordnung Rechnungen bis Sommer/Herbst 2013 Vergleichende Tracking und BBU Rechnungen bis Frühjahr 2014→ Entscheidung über Lattice

- Bis Ende 2013 Entscheidung Kryomodul
- Frühjahr 2014 Entscheidung Lattice
- Sommer 2014 Gebäudemodifikationen (Wanddurchbrüche...)
- Ende 2014 Beginn Aufbau Injektor
- Ende 2015: Inbetriebnahme Reinraum (HIM-Institutsgebäude)
- 2015/16 Aufbau Lattice, Betrieb Injektor
- Ende 2016 Fertigstellung/Auslieferung Kryomodule
- 2017 Inbetriebnahme Kryomodule
- Ende 2017 Inbetriebnahme MESA

MESA-Projektteam:

I. Alexander, K. Aulenbacher, V. Bechthold, Ma.Dehn, Mo.Dehn, F. Fichtner, S. Heidrich, R. Heine, K.H. Kaiser, E. Kirsch, H.J.-Kreidel, Ch. Matejcek, U. Ludwig-Mertin, V.Schmitt, D. Simon

Weitere erhebliche Expansion des Projektteams in nächster Zukunft!

MESA wird unterstützt von :

- Land Rheinland-Pfalz
- Exzellenzinitiative des Bundes: PRISMA-Exzellenzcluster
- DFG: SFB 1044
- BMBF-Verbundforschung: Photocathodes for high brillance beams

-

Danke für Ihre Aufmerksamkeit! Suche nach dunklen Photonen an MAMI/MESA

OF THE STANDARD MODEL

"Bump-hunt" Experimente können (M_A'> 100MeV) sofort begonnen werden: MAMI/A-1 und JLAB/Aspect

