# SUCHE NACH DUNKLEN PHOTONEN AN MAMI

Harald Merkel Johannes Gutenberg-Universität Mainz

> Frühjahrstagung der DPG Dresden, 8. März 2013

- Motivation
  - Hinweise auf Physik jenseits des Standardmodells
  - Kandidaten aus der Teilchenphysik
  - ► Das γ'-Boson
- Wie können wir ein "dunkles Photon" messen?
  - ► Di-Lepton-Produktion
  - ► Wirkungsquerschnitte
- Experimente am Mainzer Mikrotron (MAMI)
  - ► Experimente
  - ► Ergebnisse
- Experimentelles Programm an MAMI und anderen Beschleunigern
- Zusammenfassung

## Rotationskurven der Galaxien



F. Zwicky, ApJ, 86 (1937) 217, E. Corbelli, P. Salucci, MNRAS 311 (2002), 441 – 447

#### Dunkle Materie in der Kosmologie



M. Kowalski *et al.* Ap.J. 686 (2008) 749 D. J. Eisenstein, *et al.*, ApJ 633 (2005), 560

## Galaxien-Cluster 1E 0657-56 "Bullet-Cluster"



- Sichtbares Licht: Sterne (keine Kollision)
- Röntgenbereich: Intergalaktisches Gas (EM-Schockwellen)
- Gravitationslinsen: Massenverteilung (Keine Kollision!!!)
- $\Rightarrow$  Sichtbare Masse bleibt hinter Gesamtmasse zurück







#### Steckbrief:

- Massiv
- Langsam (kalt)
- "Fast" keine Wechselwirkung mit Materie des Standardmodells
- Erzeugung im Urknall

Kandidaten:

- Baryonische dunkle Materie, Gas-Wolken, schwarze Löcher, MACHOs
  - 4 Primordial Nukleosynthese, Erfolglose Suche
- Heiße dunkle Materie, z.B. Neutrinos
  - 5 Strukturformation
- Kalte dunkle Materie
  - ► WIMPs: Weakly Interacting Massive Particles?
  - ► Axion?
  - Leichtestes Supersymmetrisches Teilchen (LSP)?
  - ► Neutralino, Sneutralino, Gravitino, Axino,...?

 $\Rightarrow$  Hypothese: unbekannte Teilchen bilden dunkle Materie

#### Konventionelle Strategien für die Suche nach dunkler Materie





Direkte Produktion:

LHC

Direkte Suche:

CDMS, DAMA/LIBRA, XENON, CRESST, LUX, COUPP, KIMS, ...



Indirekte Suche:

PAMELA, Fermi, HESS, ATIC, WMAP, ...

Annahmen:

- Es gibt dunkle Materie (SUSY oder etwas anderes)
- Mehr als EIN Teilchen der dunklen Materie
   dunkler Sektor
- Dunkle Materie hat eine Restwechselwirkung mit Standard-Modell-Materie (außer Gravitation)
- Dunkle Materie wechselwirkt mittels einer "dunklen Kraft"

Frage:

- Wie ist der Charakter der "dunklen Kraft"?
- Skalare, pseudo-skalare, oder Vektor-Bosonen?
- Massiv oder masselos? In welchem Massebereich?
- Wie groß ist die Koppplungskonstante?

# ?

Wie "konstruiert" man Erweiterungen des Standardmodells?

- 1. Neue Symmetrie-Gruppen
- 2. Symmetriebrechung, so dass Standardmodell eine gute Näherung bleibt!

Konsequenzen:

- Zusätzliche U(1)-Eichbosonen treten fast automatisch auf:
  - Große Eichgruppen müssen gebrochen werden
  - $\blacktriangleright$  U(1) sind lokale Symmetrien mit niedrigstem Rang
- U(1)-Eichbosonen können versteckt sein (keine WW mit SM)
- Beispiel: U(1)-Eichbosonen bei der String-Kompaktifizierung:

$$E_8 \times E_8 \rightarrow E_6 \times E_8 \rightarrow \underbrace{SU(3)_c \times SU(2)_L \times U(1)_Y}_{\text{standard model}} \times \underbrace{U(1)_{\text{hidden}}}_{\text{standard model}}$$

durch spontane Brechung von  $E_8$ 

• Es gibt keinen Grund, dass U(1) Bosonen sehr schwer sind!

Dunkle Materie koppelt an U(1)-Boson Mischung zwischen  $\gamma$  und  $\gamma'$  über kinetischen Term

$$\mathcal{L} = \dots + -\frac{1}{4} F_{\mu\nu}^{SM} F_{SM}^{\mu\nu} - \frac{1}{4} F_{\mu\nu}^{hidden} F_{hidden}^{\mu\nu} + \frac{\varepsilon}{2} F_{\mu\nu}^{SM} F_{hidden}^{\mu\nu} + m_{\gamma'}^2 A_{\mu}^{hidden} A_{hidden}^{\mu}$$

• Renormierung der Ladung:

 $\Rightarrow$  Mischung Standard-Modell-Ladung — "dunkle" Ladung

- Mischungs-Parameter  $\epsilon$  der  $\gamma'/\gamma$  Mischung
- Boson-Masse  $m_{\gamma'} > 0 \Rightarrow$ Zerfall ist unterdrückt, makroskopische Lebenszeit

# ⇒ Suche nach $\chi$ bei hohen Energien ODER Suche nach $\gamma'$ bei niedrigen Energien!

B. Holdom, Phys. Lett. B 166 (1986) 196

Gibt es experimentelle Hinweise?



- Präzisionsmessung von (g-2) des Muons am BNL
- Signifikante Diskrepanz mit Rechnungen des Standardmodells
- Mögliche Erklärung: Zusätzliches U(1)-Boson  $\gamma'$

G. W. Bennet *et al.*, Phys. Rev. D 73, 072003 (2006) M. Pospelov, Phys. Rev. D 80, 095002 (2009)

## DAMA/Nal und DAMA/LIBRA

- Nal-Detektor im Gran-Sasso-Massiv
- Elastische Streuung  $\chi + N \rightarrow \chi + N$
- Modulation:

 $S_0 + A\cos\omega(t-t_0)$ 

- Erwartete Phase: 2. Juni ( $t_0 = 152$ )
- 8.2 $\sigma$  Signal mit  $t_0 = 144 \pm 8$





#### R. Bernabei et al., Eur. Phys. J. C (2008) 56: 333-355



- Signale mit jahreszeitlicher Modulation DAMA und CoGeNT?
- XENON100, CDMS: Koinzidenzexperimente
- ⇒ Mögliche Erklärung: Reaktionsmechanismus (Elektronen, angeregte DM)

E. Aprile et al., Phys. Rev. Lett. 107 (2011) 131302



 $\Rightarrow$  Positronen aus der Annihilation  $e^+ + e^-$ 

## PAMELA: Positron-Überschuss





 $\Rightarrow$  Überschuss von Positronen für  $E > 10 \, GeV$ 

- g-2 des Muons
- Direkte Streuung  $\Rightarrow$  DAMA/LIBRA-Modulation
- Positronenüberschuss, aber keine Anti-Protonenüberschuss (PAMELA, INTEGRAL 511 keV-Linie, etc.)
  - $\Rightarrow$  Großer Annihilationswirkungsquerschnitt
- ABER: Vorkommen der DM in Kosmologie erforderd niedrigen WQ
  - $\Rightarrow$  Sommerfeld-Enhancement des Wirkungsquerschnitts für geringe Geschwindigkeiten
    - großer WQ für Zerfall in Leptonen
    - kleiner WQ für Zerfall in Hadronen



N. Arkani-Hamed, et al., Phys. Rev. D 79 (2009) 015014



J. Jaeckel and A. Ringwald, Annu. Rev. Nucl. Part. Sci. (2010) 60:405-437

#### Parameter-Bereich für Masse und Mischungsparameter des $\gamma'$ -Bosons



• Interessanter Bereich:  $10^{-8} < \varepsilon < 10^{-2}$   $10 \,{\rm MeV} < m_{\gamma'} < 1000 \,{\rm MeV}$ 

• Energiebereich von MAMI!

J. D. Bjorken et al., Phys. Rev. D 80, 075018 (2009)

# Messprinzip

#### Quasi-Photoproduktion an schweren Targetkernen



#### Weizsäcker-Williams-Näherung:

$$\frac{d\sigma}{dxd\cos\theta_{\gamma'}} \approx \frac{8Z^2\alpha^3\varepsilon^2E_0^2x}{U^2}\tilde{\chi}\left[(1-x+\frac{x^2}{2})-\frac{x(1-x)m_{\gamma'}^2\left(E_0^2x\theta_{\gamma'}^2\right)}{U^2}\right]$$

mit

$$x = \frac{E_{\gamma'}}{E_0}$$

$$U(x, \theta_{\gamma'}) = E_0^2 x \theta_{\gamma'}^2 + m_{\gamma'}^2 \frac{1-x}{x} + m_e^2 x$$

#### Lebensdauer:

$$\gamma c \tau \sim 1 \, \mathrm{mm} \left(\frac{\gamma}{10}\right) \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \,\mathrm{MeV}}{m_{\gamma'}}\right)$$

J. D. Bjorken et al., Phys. Rev. D 80, 075018 (2009)





- Virtuelles Photon anstelle von  $\gamma'$
- Exakt berechenbar (nur QED)
- Gleicher Verlauf wie Wirkungsquerschnitt der Produktion
- $\bullet \Rightarrow \text{Nicht separierbar}$

- Exakt berechenbar (nur QED)
- Peak für  $l^*$  auf der Massenschale
- Energieübertrag auf  $l^-$  oder  $l^+$
- $\bullet \Rightarrow$  Kinematische reduzierbar

#### Andere Untergründe: Messung!

#### **Bethe-Heitler-Untergrund**



- Peak bei  $m_{e^+e^-} = 0$
- Peak für asymmetrische Produktion
- Minimal bei symmetrischer Produktion bei x = 1 (voller Energieübertrag auf  $\gamma'$ )

# **Das Experiment**



Harald Merkel, DPG-Frühjahrstagung, Dresden 2013

# A1: Spektrometeranlage an MAMI



Spektrometer A:  

$$\alpha > 20^{\circ}$$
  
 $p < 735 \frac{\text{MeV}}{c}$   
 $\Delta \Omega = 28 \text{ msr}$   
 $\Delta p/p = 20\%$ 

Spektrometer B:  

$$\alpha > 8^{\circ}$$
  
 $p < 870 \frac{\text{MeV}}{c}$   
 $\Delta \Omega = 5.6 \text{msr}$   
 $\Delta p/p = 15\%$ 

Spektrometer C:  

$$\alpha > 55^{\circ}$$
  
 $p < 655 \frac{\text{MeV}}{c}$   
 $\Delta \Omega = 28 \text{ msr}$   
 $\Delta p/p = 25\%$ 

 $\delta p/p < 10^{-4}$ 



- Target: 0.05 mm Tantal (mono-isotopisch <sup>181</sup>Ta)
- Strahlstrom: 100µA
- Luminosität:  $L = 1.7 \cdot 10^{35} \frac{1}{\text{s cm}^2}$   $(L \cdot Z^2 \approx 10^{39} \frac{1}{\text{s cm}^2})$
- Kompletter Energieübertrag auf  $\gamma'$ -Boson (x = 1)
- Minimale Winkel der Spektrometer
- Spektrometer-Setup möglichst symmetrisch

| Strahl-Energie | $E_0 =$          | 855.0 MeV             |
|----------------|------------------|-----------------------|
| Spektrometer A | $p_{e^{-}} =$    | $338.0\mathrm{MeV}/c$ |
|                | $\theta_{e^-} =$ | <b>22.8</b> °         |
| Spektrometer B | $p_{e^{+}} =$    | $470.0\mathrm{MeV}/c$ |
|                | $\theta_{e^+} =$ | 15.2°                 |



- Teilchenidentifizierung  $e^+$ ,  $e^-$  mit Tscherenkov-Detektor
- Korrektur der Fluglänge im Spektrometer  $\approx 12 \text{ m}$  $\Rightarrow$  Reaktion identifiziert mittels Flugzeit
- Koinzidenzzeitauflösung  $\approx 1 \, {
  m ns} \, {
  m FWHM}$
- Untergrundabschätzung: Seitenband  $5 \text{ ns} < T_{A \wedge B} < 25 \text{ ns}$
- Fast kein zufälliger Untergrund  $\approx 5\%$
- Oberhalb des Untergrunds: nur koinzidente  $e^+e^-$ -Paare!



• Masse des  $e^-e^+$ -Paars  $m_{\gamma'}^2 = (e^- + e^+)^2$ 

• Welche Breite erwarten wir?



- Elastische Streuung
  - ► Natürliche Breite ≪ Auflösung
  - ► Linienbreite gibt obere Grenze

▶ 
$$\delta p/p < 10^{-4}$$
 für Spektrometer

- Input f
  ür volle Simulation
  - ► Vielfachstreuung (-)
  - ► Strahlungskorrekturen (-)
  - ► Zerfallslänge (+)
  - ► Missing-Mass Auflösung (+)

$$\Rightarrow \delta m_{e^+e^-} < 0.5 \,\mathrm{MeV}/c^2 \,\mathrm{FWHM}$$

N.B.: Systematischer Fehler  $\delta m_{e^+e^-} < 10^{-3}!$ 



- Konfidenzgrenzen mittels Feldman-Cousins-Algorithmus
- "Modell" für Untergrund: Mittel von 3 Bins links und rechts des Zentralbins
- Auflösung  $\delta m < 500 \, {\rm keV} =$  Binbreite
- Mittelung (über 10 Bins) für Abschätzung

## Ausschlussgrenzen für Mischungsparameter $\epsilon$



- Zufälliger Untergrund + QED-Untergrund
- Modellabhängigkeiten nur am Kern-Vertex für  $\gamma'$  und  $\gamma^*$
- Aus Verhältnis der Wirkungsquerschnitte:

$$\frac{d\sigma(X \to \gamma' Y \to l^+ l^- Y)}{d\sigma(X \to \gamma^* Y \to l^+ l^- Y)} = \left(\frac{3\pi\varepsilon^2}{2N_f\alpha}\right) \left(\frac{m_{\gamma'}}{\delta_m}\right)$$

 $\Rightarrow$  Ausschlussgrenzen für 4 Tage Strahlzeit  $\epsilon < 10^{-3}$ 

H.M. et al., Phys. Rev. Lett. 106 (2011) 251802

| Kinematik  | $E_0$ | $p_{\mathrm{A}}$ | $p_{\mathrm{B}}$ | $\overline{I}_0$ | Tar   | get    | t           |
|------------|-------|------------------|------------------|------------------|-------|--------|-------------|
|            | (MeV) | (MeV/c)          | (MeV/c)          | (µA)             | (mg/  | $cm^2$ | t           |
| DM2012_57  | 180   | 78.7             | 98.0             | 2.2              | Foil  | 9.4    | 12h 30' 56" |
| DM2012_72  | 240   | 103.6            | 132.0            | 5.5              | Foil  | 9.4    | 46h 53' 18" |
| DM2012_77  | 255   | 110.1            | 140.4            | 7.0              | Foil  | 9.4    | 43h 49' 11" |
| DM2012_91  | 300   | 129.5            | 164.5            | 11.7             | Foil  | 9.4    | 37h 56' 03" |
| DM2012_109 | 360   | 155.4            | 197.6            | 16.6             | Foil  | 9.4    | 5h 15' 29"  |
| DM2012_138 | 435   | 190.7            | 247.7            | 43.4             | Foil  | 9.4    | 44h 3' 27"  |
| DM2012_150 | 495   | 213.7            | 271.6            | 7.0              | Stack | 113.1  | 36h 25' 16" |
| DM2012_177 | 585   | 250.0            | 317.3            | 16.3             | Stack | 113.1  | 29h 37' 03" |
| DM2012_218 | 720   | 309.2            | 392.7            | 19.4             | Stack | 113.1  | 76h 0'20"   |

| Spektrometer | Winkel          | Raumwinkel | $\Delta p/p$ |
|--------------|-----------------|------------|--------------|
|              |                 | (msr)      |              |
| A (electron) | 20.01°          | 21.0       | 20%          |
| B (positron) | $15.63^{\circ}$ | 5.6        | 15%          |

- Massenbereich 50 MeV  $< m_{\gamma} <$  200 MeV
- 9 verschiedene Strahlenergien





- Erster Teil 2013
- Fortsetzung Ende des Monats

#### **2.** Schritt Sekundärvertex $\rightarrow$ kleine Kopplungskonstante



- Sensitiv auf Zerfallslängen von 10 mm 130 mm
- $\Rightarrow \gamma c \tau = 4.35 \text{ mm} 1120 \text{ mm}$  (10%-Grenze)
- $\bullet \Rightarrow \varepsilon = 10^{-6} 10^{-5}$
- Target: 5 mm Ta  $\Rightarrow$   $L = 1.72 \cdot 10^{37} \frac{1}{\text{s cm}^2}$  bei 100  $\mu$ A Strahlstrom
- Strahlstabilisierung, Abschirmung, Kühlung



- Makroskopische Zerfallslänge
- Luminosität
- Kopplungsstärke gegen Lebensdauer *n*
- Winkelbereich

 $m_{\gamma'} < 500 \,\mathrm{MeV}/c^2$  $m_{\gamma'} > 30 \,\mathrm{MeV}/c^2$ 

 $\epsilon < 10^{-4}$ 

 $\varepsilon > 10^{-6}$ 



- Konzept: DarkLight (JLab FEL)
- Vielfachstreuung wird durch Gas-Target minimiert
- Niedrige Energie Hoher Strom bei sehr guter Strahlqualität
- 4π-Detektor bei 200 MHz Zählrate bei hoher Auflösung

M. Freytsis, G. Ovanesyan, J. Thaler, JHEP 01 (2010) 111



Energie-Rückgewinnung mit supraleitendem Linearbeschleuniger  $\Rightarrow L = 10^{35} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-2}$  mit internem Wasserstoff-Gastarget

#### 3. Schritt: Bereich niedriger Masse, MESA Beschleuniger



- Target: Xenon
- Detektoren: Zwei Spektrometer
- ca. 1 Monat Messzeit

#### Laufende Projekte weltweit

Dark Light (JLab FEL) Freytsis et al. arXiv:0909.2862

KLOE:  $e^+ + e^- 
ightarrow \eta + \gamma'$ 



## Zusammenfassung



- Experimentelles Programm:
  - Paarproduktion am schweren Targetkern
  - Niedrige Energie hoher Strom
  - Endlicher Produktionsvertex
- Pilotexperimente an MAMI und JLab
  - Experimente sind machbar, zufälliger Untergrund ist gering
  - Q.E.D.-Prozess ist verstanden und berechenbar auf 1%
  - Neue Messungen mit ausgedehntem Bereich

Bestimmung signifikanter Ausschlussgrenzen für  $\gamma'$ -Bosonen mit existierenden Anlagen möglich

 $\epsilon > 4 \cdot 10^{-4}$  $m_{\gamma'} < 50 \,\text{MeV}/c^2$  $10^{-6} < \epsilon < 10^{-4}$