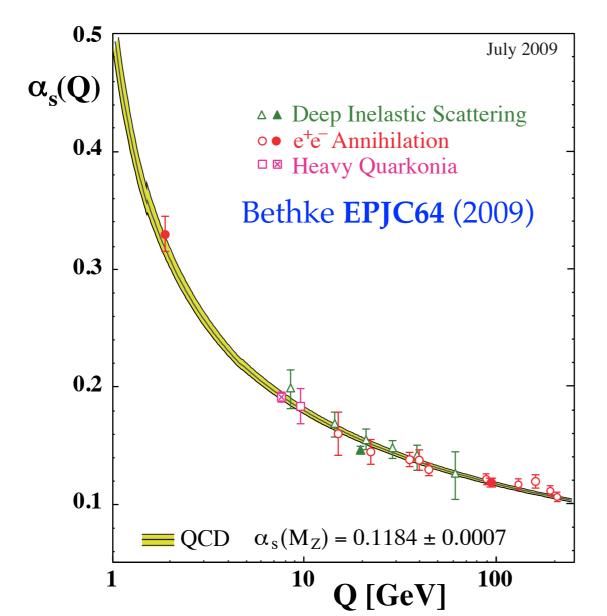
Jacopo Ghiglieri, McGill University, Montreal

Dissertationspreis-Symposium der DPG Dresden, 04.03.2013

Quarks and gluons: QCD

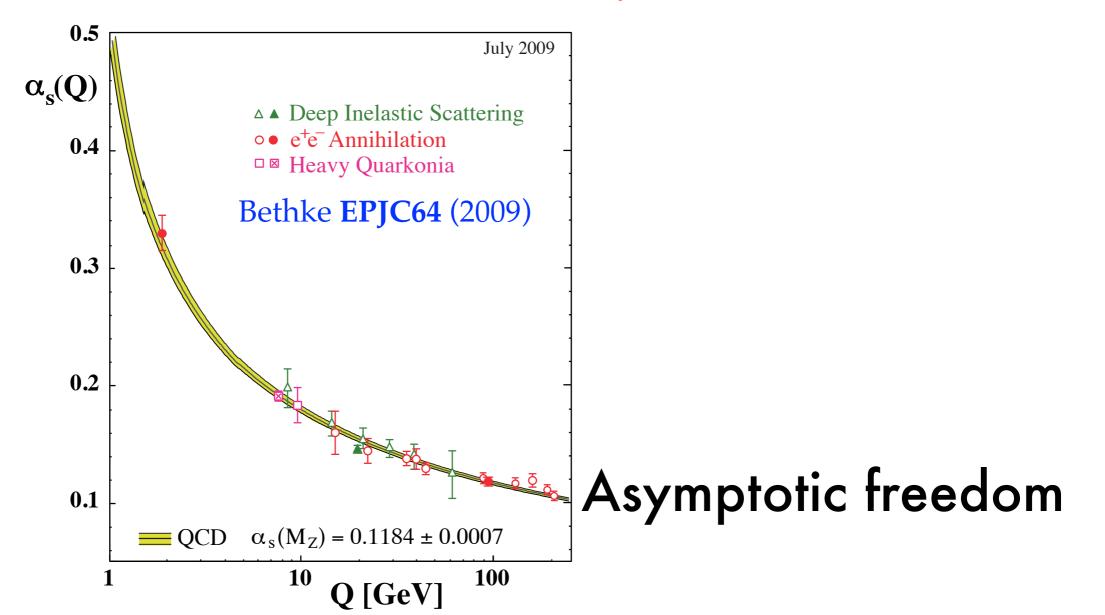
Quarks and gluons: QCD

• QCD is the theory of the strong interactions of quarks and gluons. Its quantization causes the coupling constant to run with the energy and introduces the scale $\Lambda_{\rm QCD} \simeq 200 \, {\rm MeV}$



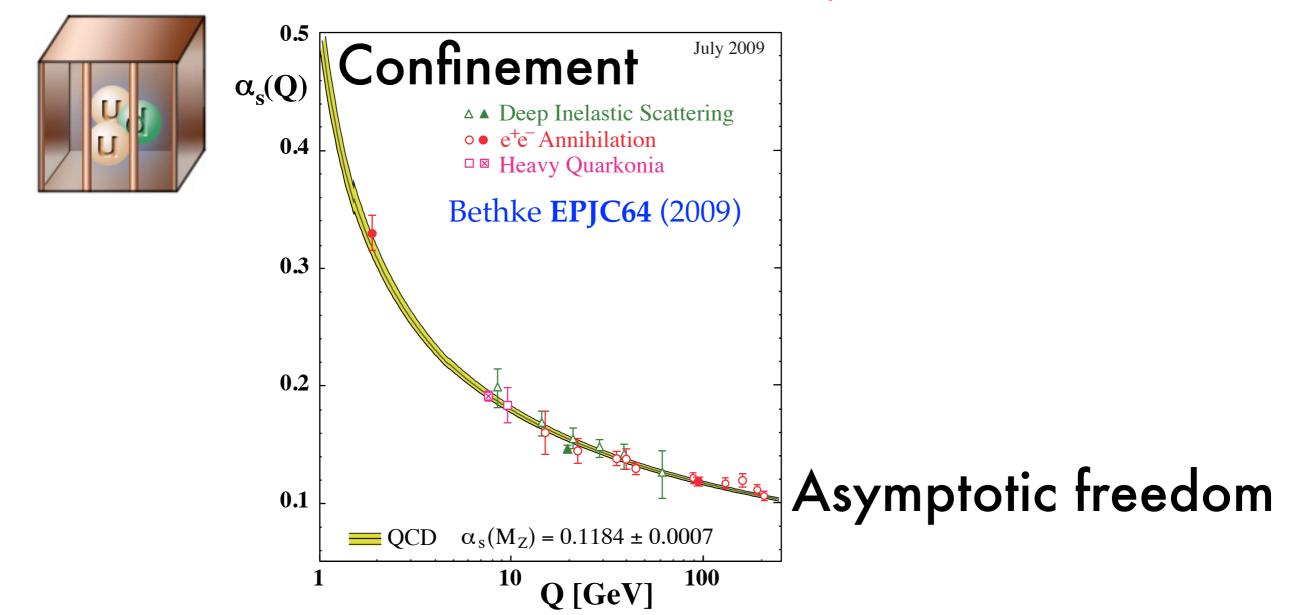
Quarks and gluons: QCD

• QCD is the theory of the strong interactions of quarks and gluons. Its quantization causes the coupling constant to run with the energy and introduces the scale $\Lambda_{\rm QCD} \simeq 200 \, {\rm MeV}$



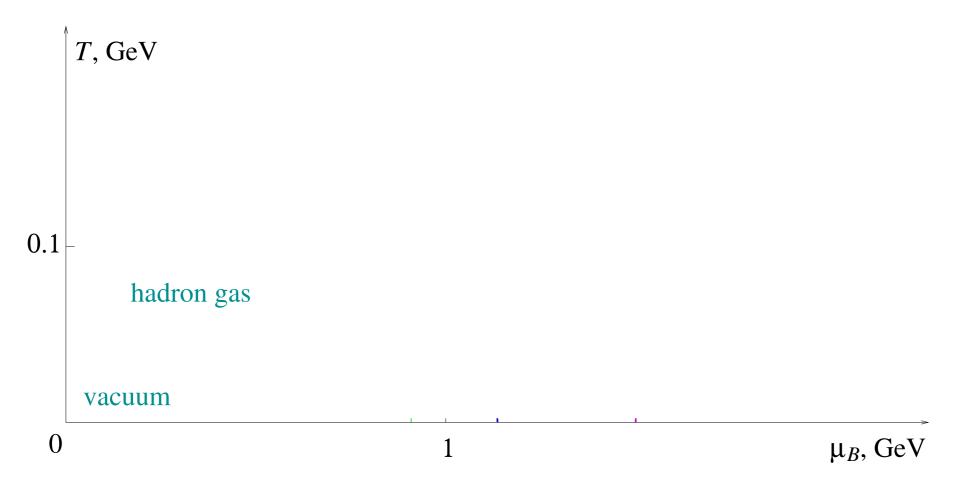
Quarks and gluons: QCD

• QCD is the theory of the strong interactions of quarks and gluons. Its quantization causes the coupling constant to run with the energy and introduces the scale $\Lambda_{\rm QCD} \simeq 200 \, {\rm MeV}$



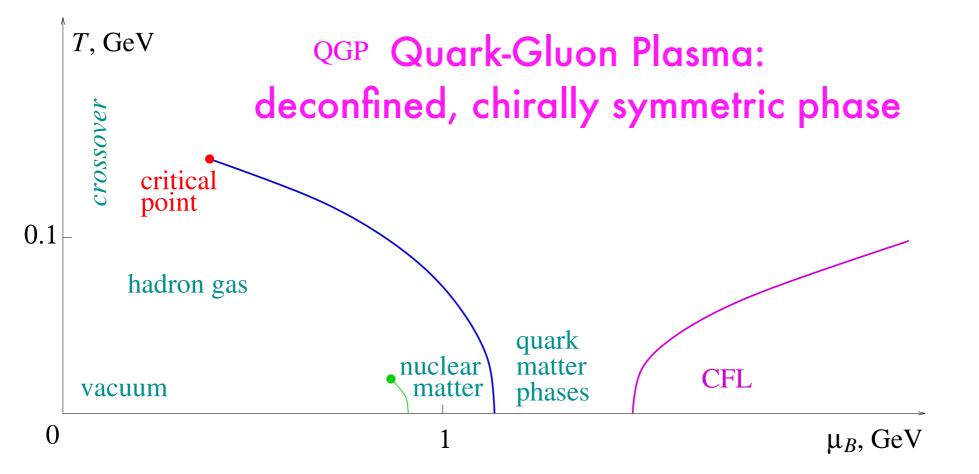
The phase diagram of QCD

• In the temperature/baryon chemical potential plane:



The phase diagram of QCD

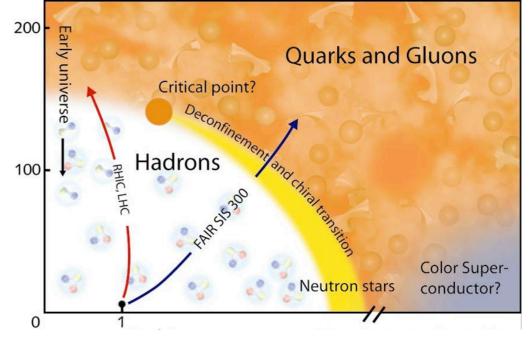
• In the temperature/baryon chemical potential plane:



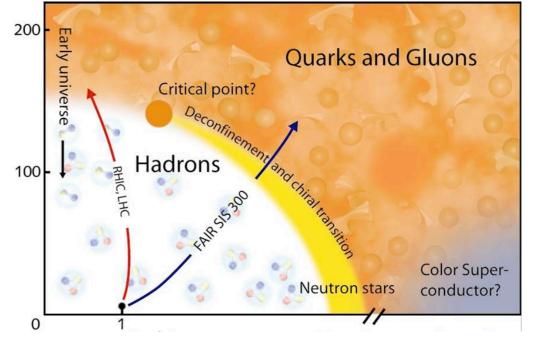
- In the upper-left region, lattice QCD indicates a (pseudo)critical temperature T_c~160 MeV ~2x10¹² K
- For comparison, sun's core: *T*~1.5x10⁷ K

Heavy ion collision experiments

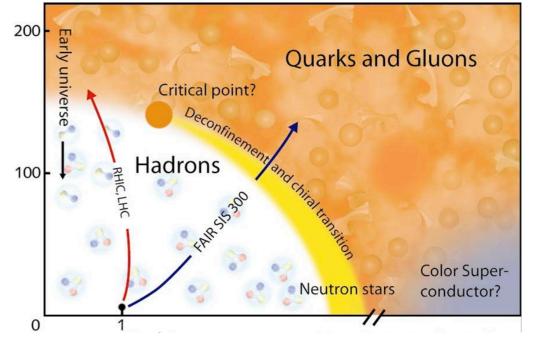
Heavy ion collision experiments



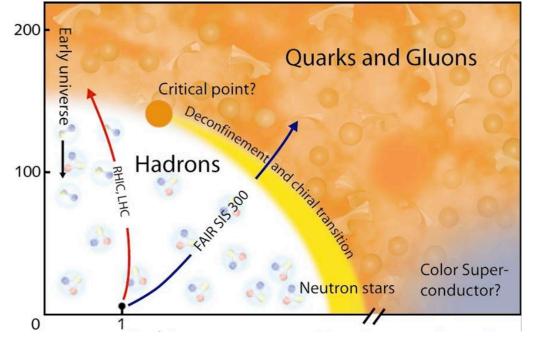
Heavy ion collision experiments

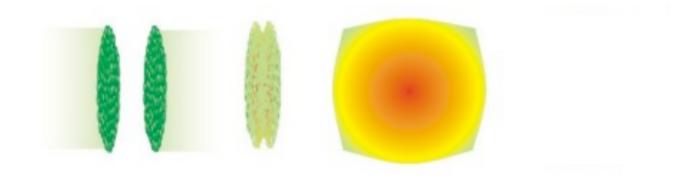


Heavy ion collision experiments

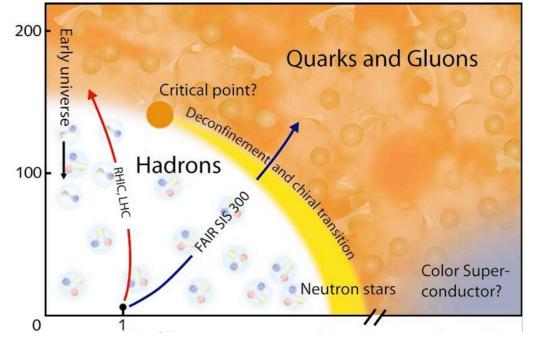


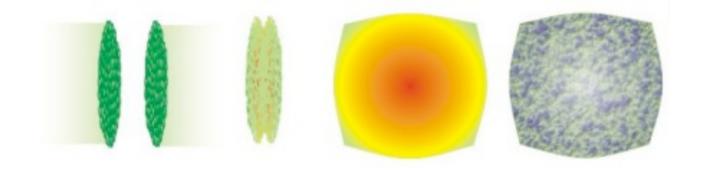
Heavy ion collision experiments



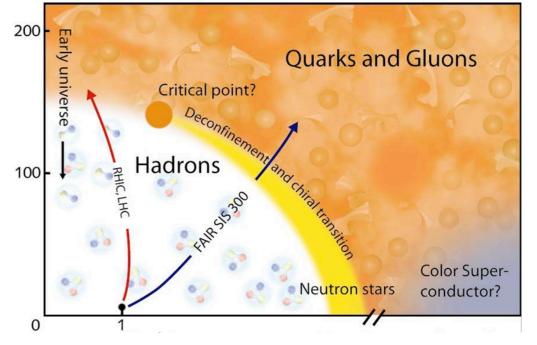


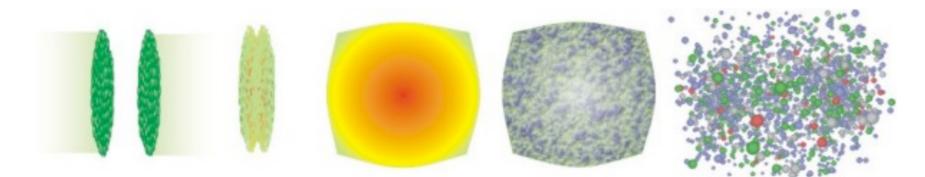
Heavy ion collision experiments





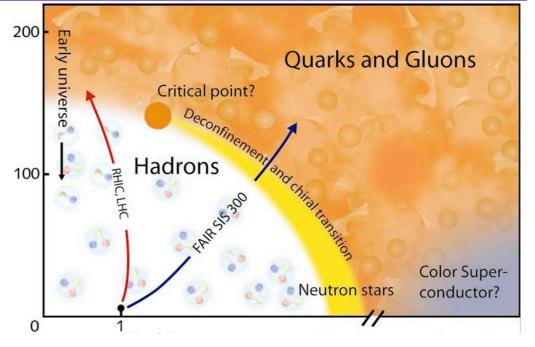
Heavy ion collision experiments

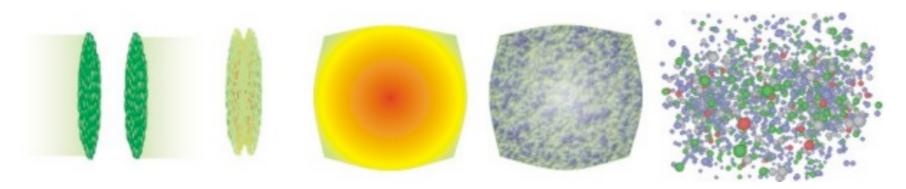




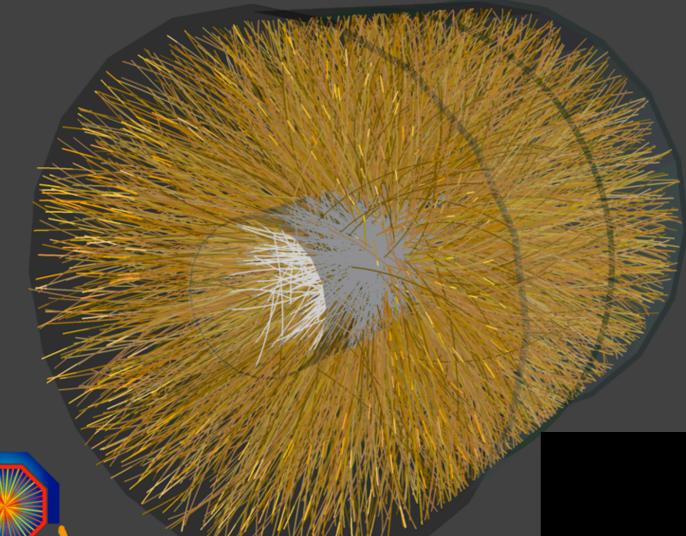
Heavy ion collision experiments

Past experiments at the CERN SPS, currently at the RHIC (BNL) and the LHC and future at FAIR (GSI). Energies *per nucleon pair*: 200 GeV at RHIC, 2.76 TeV at LHC





• The highest particle multiplicities are measured in these experiments, such as $dN_{\rm ch}/d\eta = 1584 \pm 4 \, (stat.) \pm 76 \, (sys.)$ ALICE PRL105 (2010)

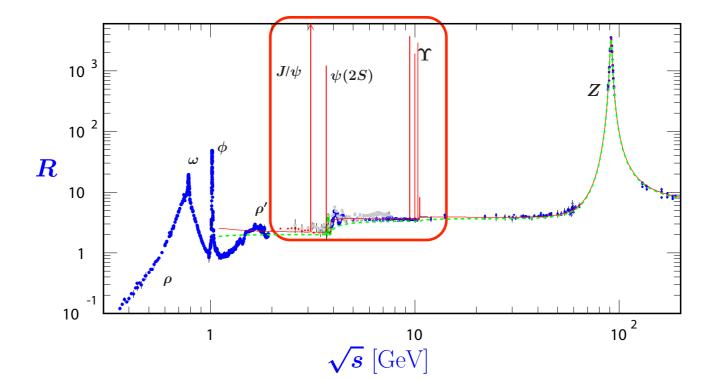


- Characterization of the medium through **two** classes of observables
 - Bulk properties (hydro, flow, etc...)
 - Hard probes (jets, e/m probes, quarkonia...)

- **Hard probes:** *high-energy* particles *not in equilibrium* with the medium.
- Medium *tomography* and characterization of its properties, such as deconfinement

Heavy quarkonia

- The masses of the *c* (~1.5 GeV), *b* (~4.5 GeV) and *t* (~175 GeV) are much larger than Λ_{QCD}.
 They are called *heavy quarks*, and their quark-antiquark bound states QQ are called *quarkonia*
- The lower resonances of charmonium and bottomonium are to a good deal *non-relativistic* and *perturbative*.



Quarkonium as a hard probe

J/ ψ SUPPRESSION BY QUARK-GLUON PLASMA FORMATION \star

T. MATSUI

Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

and

H. SATZ

Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 17 July 1986

- *Hypothesis*: colour screening leads to the disappearance of the bound state
- A suppressed J/ψ yield is observed in the dilepton channel
 Matsui Satz PLB178 (1986)

Quarkonium suppression in experiments

• Typical observable: the **nuclear modification factor**

$$R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp} \times N_{bin}}$$

- $R_{AA} \neq 1 \Rightarrow$ deviations from binary scaling. Causes:
 - Cold Nuclear Matter effects (affect production and early stages).
 - Hot Medium effects, such as screening. Reduce
 R_{AA}
 - Recombination effects. Increase R_{AA}

Quarkonium suppression in experiments

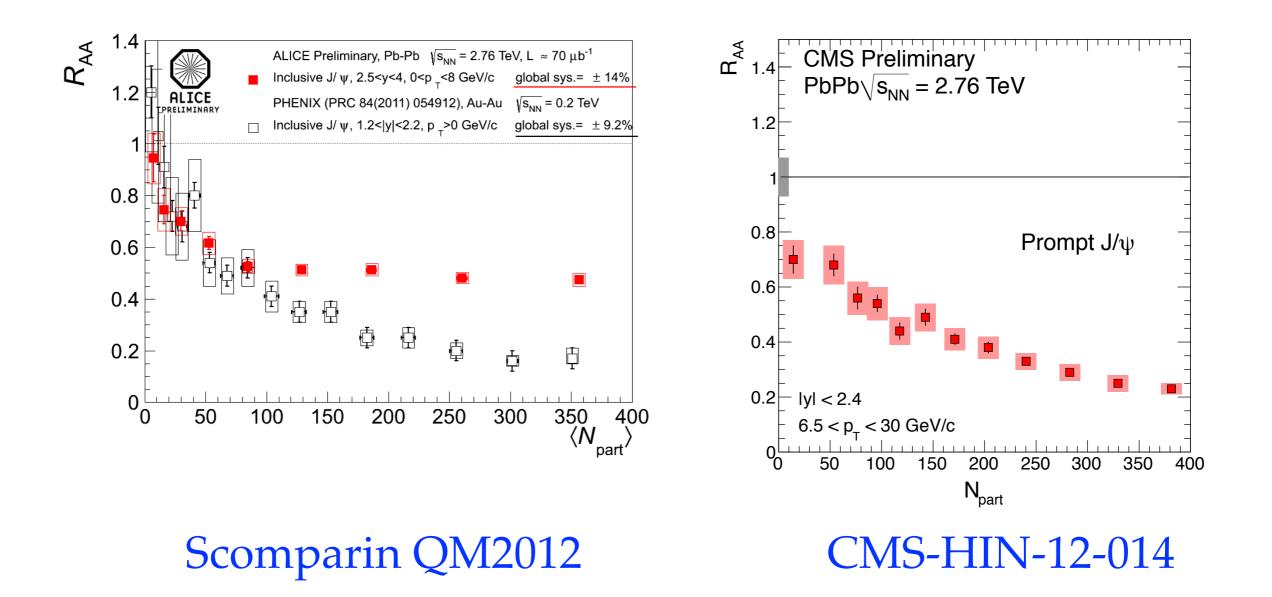
• Typical observable: the **nuclear modification factor**

$$R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp} \times N_{bin}}$$

- $R_{AA} \neq 1 \Rightarrow$ deviations from binary scaling. Causes:
 - Cold Nuclear Matter effects (affect production and early stages).
 - Hot Medium effects, such as screening. Reduce
 R_{AA}
 - Recombination effects. Increase R_{AA}

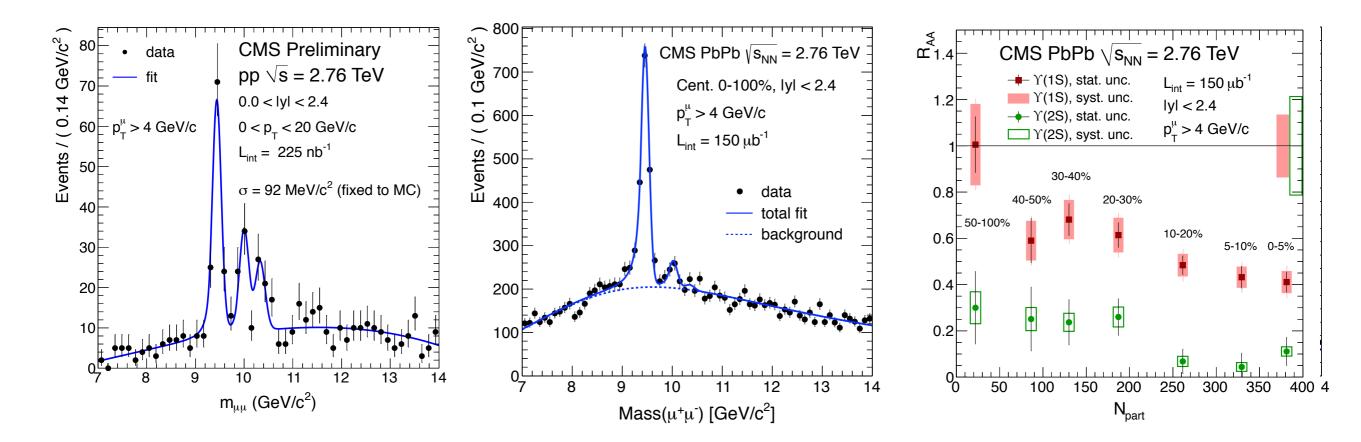
Charmonium suppression in experiments

• J/ψ suppression has been measured at SPS, RHIC and now LHC. SPS~RHIC



Bottomonium: the new frontier

• First quality data on the Y family from CMS

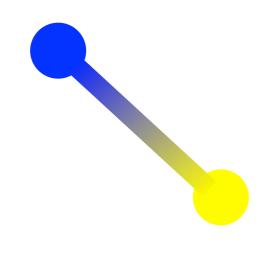


 Sequential suppression of Y(1S) and Y(2S) CMS, 1208.2826

Overview of dissociation

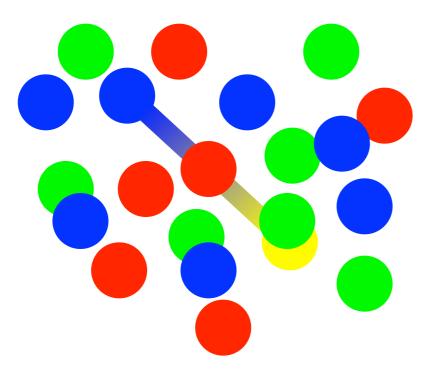
Overview of dissociation

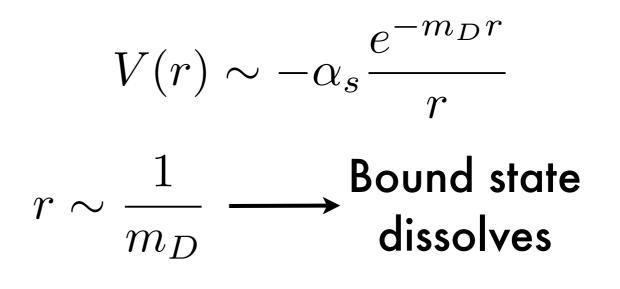
• Matsui/Satz: dissociation induced by colour screening of the interaction



Overview of dissociation

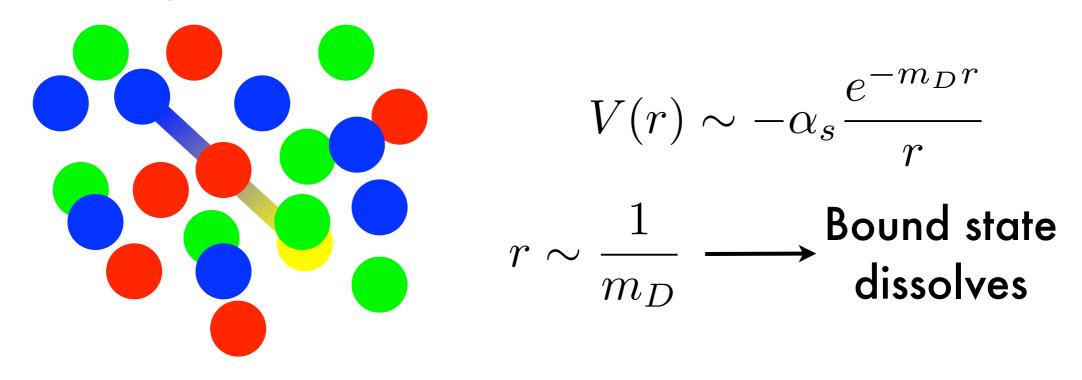
Matsui/Satz: dissociation induced by colour screening of the interaction





Overview of dissociation

Matsui/Satz: dissociation induced by colour screening of the interaction



 Since then, dissociation has been studied with potential models, lattice spectral functions, AdS/CFT and now with EFTs

Potential models

 Assume Schrödinger equation, all medium effects in a T-dependent potential

$$i\partial_t \psi(r,T) = \left(-\frac{\nabla^2}{m} + V(r,T)\right)\psi(r,T)$$

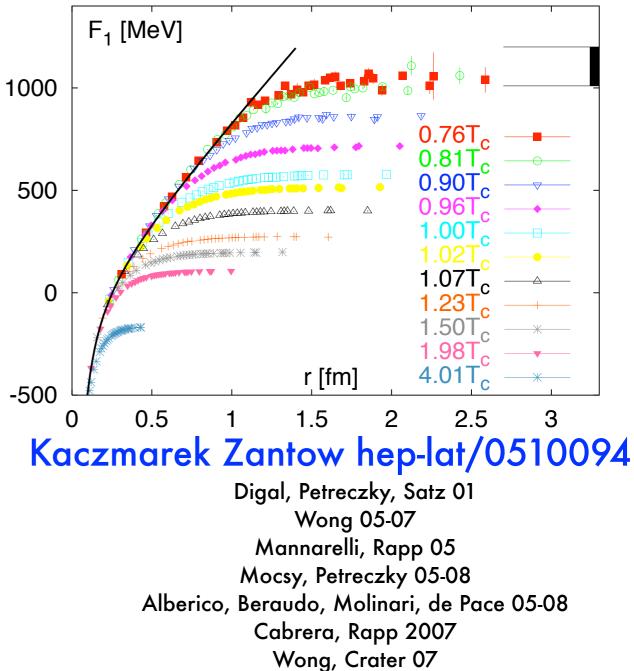
• Assume

$$V = F_1$$

potential corresponding to a free energy or

$$V = U = F - TS$$

internal energy measured on the lattice



Dumitru, Guo, Mocsy, Strickland 09

Rapp, Riek 10

Emerick, Zhao, Rapp 11

Potential models

 Assume Schrödinger equation, all medium effects in a T-dependent potential

$$i\partial_t \psi(r,T) = \left(-\frac{\nabla^2}{m} + V(r,T)\right)\psi(r,T)$$

• Assume

 $V = F_1$

potential corresponding to a free energy or

$$V = U = F - TS$$

internal energy measured on the lattice

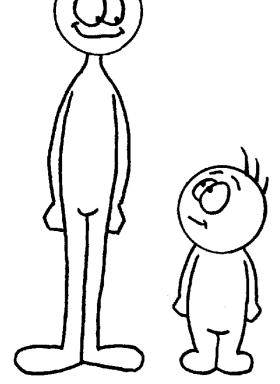
• Issues:

- No clear relation to QCD and ab-initio derivation of the potential
- Gauge-dependent correlators
- Are all effects incorporated?
- Qualitative agreement on a picture of sequential dissociation $\begin{array}{c} T/T_c & 1/\langle r \rangle \\ 2 & & 1/\langle r \rangle \\ 2 & & & \chi_b(1P) \\ 1.2 & & & & J/\psi(1S) \\ \leq 1 & & & \chi_c(1P) \end{array}$

Effective Field Theories

Effective Field Theories

• An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off ($\mu \ll \Lambda$)



Effective Field Theories

 An EFT is constructed by integrating out modes of energy and momentum larger than the cutoff (μ«Λ)

$$\mathcal{L}_{\rm EFT} = \sum_{n} c_n(\mu/\Lambda) \frac{O_n}{\Lambda^{d_n - 4}} \underbrace{ \begin{array}{c} \text{Low-energy} \\ \text{operator/} \\ \text{operator/} \\ \text{large scale} \end{array} }$$

Effective Field Theories

• An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off ($\mu \ll \Lambda$)

$$\mathcal{L}_{\rm EFT} = \sum_{n} c_n (\mu/\Lambda) \frac{O_n}{\Lambda^{d_n - 4}} \underbrace{ \begin{array}{c} \text{Low-energy} \\ \text{operator/} \\ \text{operator/} \\ \text{large scale} \end{array} }$$

 The Wilson coefficient are obtained by matching Green's functions in the two theories

Effective Field Theories

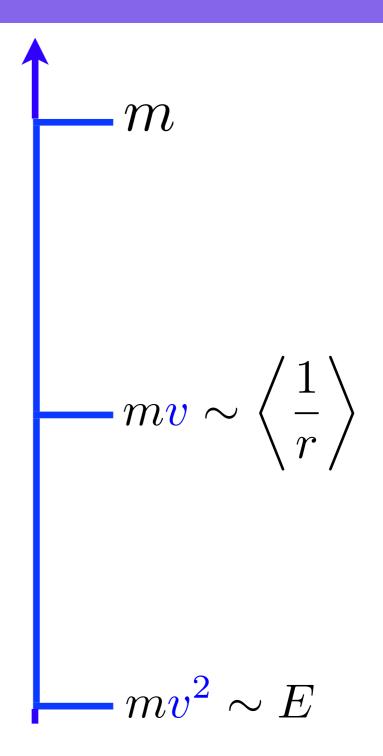
 An EFT is constructed by integrating out modes of energy and momentum larger than the cutoff (μ«Λ)

$$\mathcal{L}_{\rm EFT} = \sum_{n} c_n (\mu/\Lambda) \frac{O_n}{\Lambda^{d_n - 4}} \underbrace{ \begin{array}{c} \text{Low-energy} \\ \text{operator/} \\ \text{operator/} \\ \text{large scale} \end{array} }$$

- The Wilson coefficient are obtained by matching Green's functions in the two theories
- The procedure can be iterated $\ldots \ll \mu_2 \ll \Lambda_2 \ll \mu_1 \ll \Lambda_1$

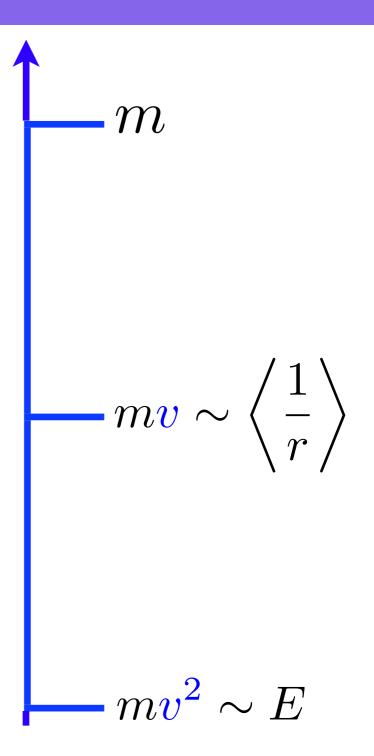
At zero temperature

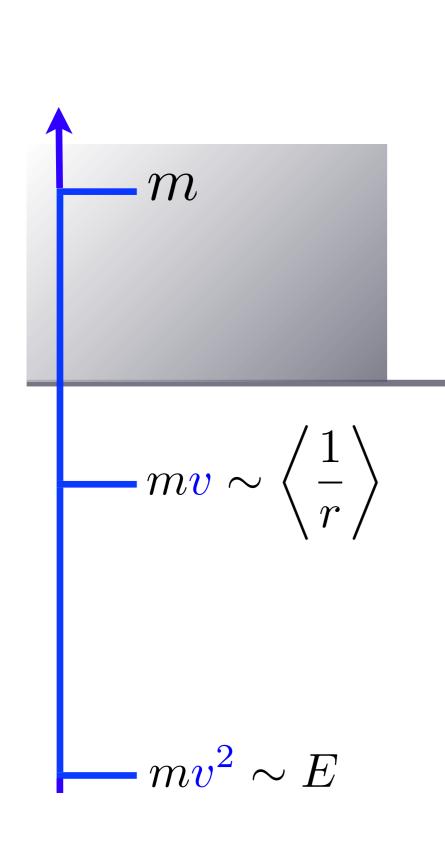
 Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum transfer and kinetic/binding energy scales



At zero temperature

- Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum transfer and kinetic/binding energy scales
- Expand observables in terms of the ratio of the scales, *v*
- Construct a *hierarchy of EFTs*.
 Equivalent to QCD order-by-order in the expansion parameter



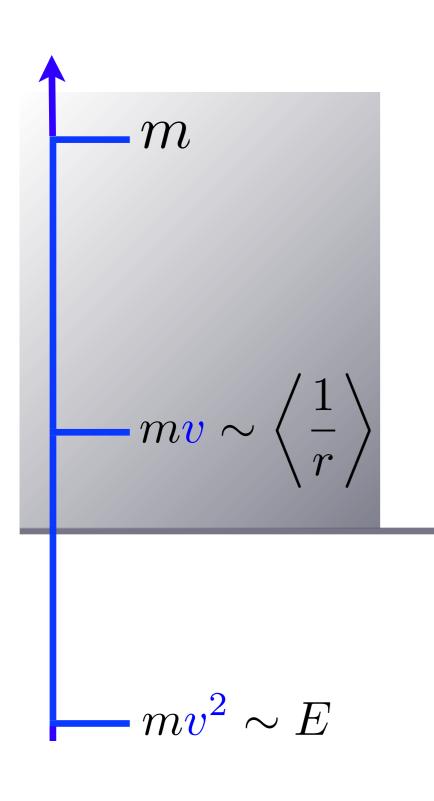


Integrating out the mass scale: Non-Relativistic QCD (NRQCD)

- The mass is integrated out and the theory becomes non-relativistic
- Factorization between contributions from the scale *m* and from lower-energies
- Ideal for production and decay studies

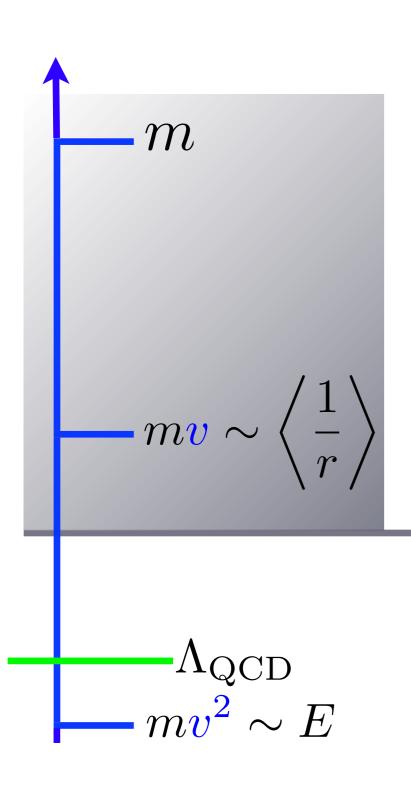
$$\mathcal{L}_{\text{NRQCD}} = \sum_{n} c_n (\mu/m) \frac{O_n}{m^{d_n - 4}}$$

Caswell Lepage **PLB167** (1986) Bodwin Braaten Lepage **PRD51** (1995)



The scale mv: potential NRQCD (pNRQCD)

- Modes with momentum *mv* are integrated out
- This gives rise to non-local four-fermion operators. Their Wilson coefficients are the potentials, rigorously defined

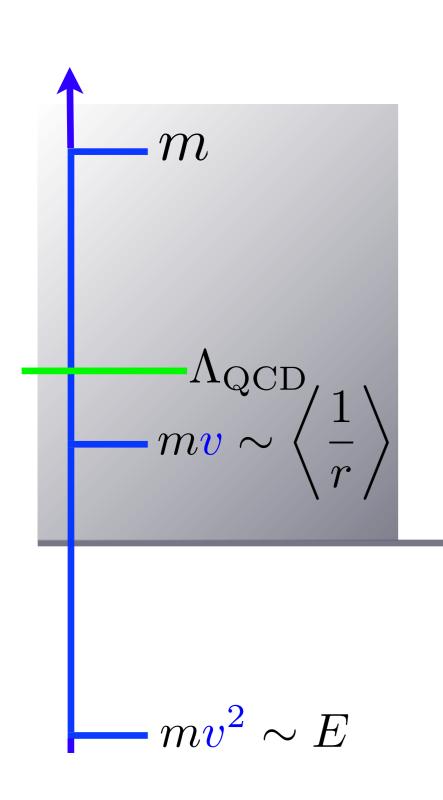


The scale mv: potential NRQCD (pNRQCD)

- Modes with momentum *mv* are integrated out
- This gives rise to non-local four-fermion operators. Their Wilson coefficients are the potentials, rigorously defined
- At weak coupling, $Q\overline{Q}$ DOFs are cast into colour-singlet and octet

 $\mathcal{L} = \mathcal{L}_{\text{light}} + \text{Tr}\left\{\mathbf{S}^{\dagger}\left[i\partial_{0} + \frac{\nabla^{2}}{m} - V_{s}\right]\mathbf{S} + \mathbf{O}^{\dagger}\left[iD_{0} + \frac{\nabla^{2}}{m} - V_{o}\right]\mathbf{O}\right\}$ $+ \text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{S} + \mathbf{S}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O}\right\} + \frac{1}{2}\text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O} + \mathbf{O}^{\dagger}\mathbf{O}\mathbf{r} \cdot g\mathbf{E}\right\} + \dots$

Pineda Soto **NPPS64** (1998) Brambilla Pineda Soto Vairo **NPB566** (2000)



The scale mv: potential NRQCD (pNRQCD)

- Modes with momentum *mv* are integrated out
- This gives rise to non-local four-fermion operators. Their Wilson coefficients are the potentials, rigorously defined
- At weak coupling, $Q\overline{Q}$ DOFs are cast into colour-singlet and octet

 $\mathcal{L} = \mathcal{L}_{\text{light}} + \text{Tr}\left\{\mathbf{S}^{\dagger}\left[i\partial_{0} + \frac{\nabla^{2}}{m} - V_{s}\right]\mathbf{S} + \mathbf{O}^{\dagger}\left[iD_{0} + \frac{\nabla^{2}}{m} - V_{o}\right]\mathbf{O}\right\}$ $+ \text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{S} + \mathbf{S}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O}\right\} + \frac{1}{2}\text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O} + \mathbf{O}^{\dagger}\mathbf{O}\mathbf{r} \cdot g\mathbf{E}\right\} + \dots$

Pineda Soto **NPPS64** (1998) Brambilla Pineda Soto Vairo **NPB566** (2000)

Goals of the thesis

- Main goal: extend the well-established *T*=0 NR EFT framework to finite temperatures to address systematically heavy quarkonia in the medium
- Modern and rigorous definition of the potential and derivation from QCD at finite temperature, systematically taking into account the imaginary parts that lead to the thermal width
- Calculations of in-medium spectra and widths
- Clarification of the relation between the thermodynamical free energies and the EFT potentials

The thermodynamical scales

The thermodynamical scales

- The thermal medium introduces new scales in the physical problem
 - The temperature
 - The electric screening scale (Debye mass)
 - The magnetic screening scale (magnetic mass)
- In the weak coupling assumption these scales develop a hierarchy

The thermodynamical scales

 $g^2T\sim m_m$.

- The thermal medium introduces new scales in the physical problem
 - The temperature
 - The electric screening scale (Debye mass) $gT \sim m_D$.
 - The magnetic screening scale (magnetic mass)
- In the weak coupling assumption these scales develop a hierarchy

Finite-temperature NR EFT how-to

 $m \gg mv \sim m\alpha_{\rm s} \sim \langle 1/r \rangle \gg mv^2 \sim m\alpha_{\rm s}^2 \sim E$

 $T \gg m_D \sim gT \gg m_m \sim g^2 T$

- Assume a global hierarchy between the bound-state and thermodynamical scales
- Many different possibilities have been considered in the relevant macroregions $T \ll mv$, $T \sim mv$ and $T \gg mv$ (with $T \ll m$)
- Proceed from the top to systematically integrate out each scale, creating a tower of EFTs. Make use of existing EFTs (*T*=0 NR EFTs, finite *T* EFTs such as HTL)
- Once the scale *mv* has been integrated out the colour singlet and octet potentials appear

• For $T >> 1/r \sim m_D$ we provide an EFT derivation and rigorous definition of the potential first obtained by Laine *et al.* $V_{\rm HTL} = -C_F \alpha_{\rm s} \left(\frac{e^{-m_D r}}{r} + m_D - i \frac{2T}{m_D r} f(m_D r) \right)$

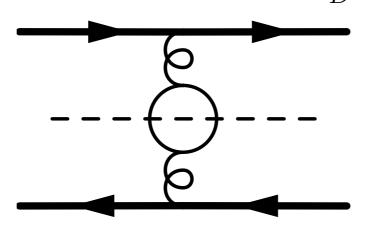
Laine Philipsen Romatschke Tassler JHEP0703 (2007)

• For $T >> 1/r \sim m_D$ we provide an EFT derivation and rigorous definition of the potential first obtained by Laine *et al.* $V_{\rm HTL} = -C_F \alpha_{\rm s} \left(\frac{e^{-m_D r}}{r} + m_D - \frac{i}{m_D r} f(m_D r) \right)$

Laine Philipsen Romatschke Tassler JHEP0703 (2007)

Landau Damping

• Re $V \Rightarrow$ screening. Im $V \Rightarrow$ width induced by collisions with the medium. Im V >> Re V for $r \sim \frac{1}{m_P}$



• For $T >> 1/r >> m_D$ we obtain new results:

• For $T >> 1/r >> m_D$ we obtain new results:

$$V_s(r) = -C_F \frac{\alpha_s}{r} - \frac{C_F}{2} \alpha_s r m_D^2 - \frac{i}{6} \frac{C_F}{6} \alpha_s r^2 T m_D^2 \left(-2\gamma_E - \ln(rm_D)^2 + \frac{8}{3} \right) + \dots$$

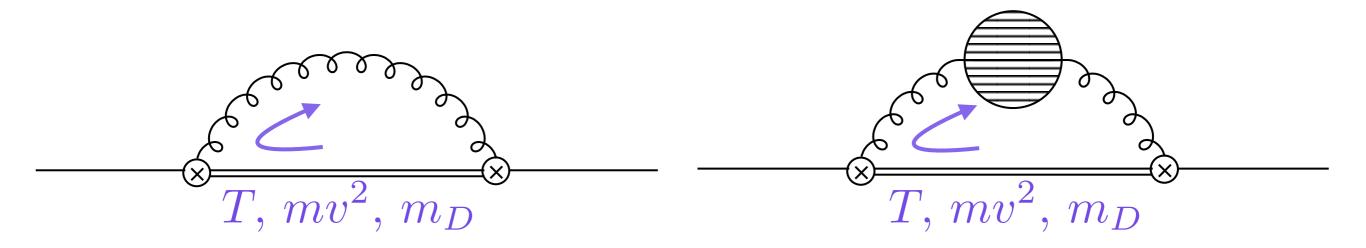
 When T ~ mα_s^{2/3} ⇒ ImV ~ ReV New criterion for a dissociation temperature Brambilla JG Petreczky Vairo PRD78 (2008) Escobedo Soto PRA78 (2008) Laine 0810.1112 (2008)

- When *mv>>T>>mv²* the thermal medium acts as a perturbation to the potential.
 Relevant for the ground states of bottomonium: *mv* ~ 1.5 GeV, *T* < 1 GeV
- The EFT obtained by integrating out the temperature from pNRQCD is called pNRQCD_{HTL}

 L<sub>pNRQCD_{HTL} = *L*_{HTL} + Tr {S[†][*i*∂₀ *h_s* δ*V_s*]S + O[†][*i*D₀ *h_o* δ*V_o*]O}
 +Tr {O[†]**r** · *g***E**S + S[†]**r** · *g***E**O} + ¹/₂Tr {O[†]**r** · *g***E**O + O[†]O**r** · *g***E**} + ...
 Brambilla Escobedo JG Soto Vairo JHEP1009 (2010)
 Brambilla Escobedo JG Vairo JHEP1107 (2011)

 </sub>

- Within this theory we computed the spectrum and the thermal width of the Y(1S) to order $m\alpha_s^5$ in the power counting of the EFT
- We must evaluate loop diagrams in the EFTs



$$\Gamma_{1S} = \frac{1156}{81} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ -\frac{4}{3} a_0^2 \alpha_{\rm s} T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ -\frac{32\pi}{3} \ln 2 a_0^2 \alpha_{\rm s}^2 T^3$$

$$E_1 = -\frac{4}{9}m\alpha_s^2, \qquad a_0 = \frac{3}{2m\alpha_s}$$

• As an example, the 1S width reads

$$\Gamma_{1S} = \frac{1156}{81} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ -\frac{4}{3} a_0^2 \alpha_{\rm s} T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ -\frac{32\pi}{3} \ln 2 a_0^2 \alpha_{\rm s}^2 T^3 \\ \overline{E_1 = -\frac{4}{9} m \alpha_{\rm s}^2, \quad a_0 = \frac{3}{2m \alpha_{\rm s}}}$$

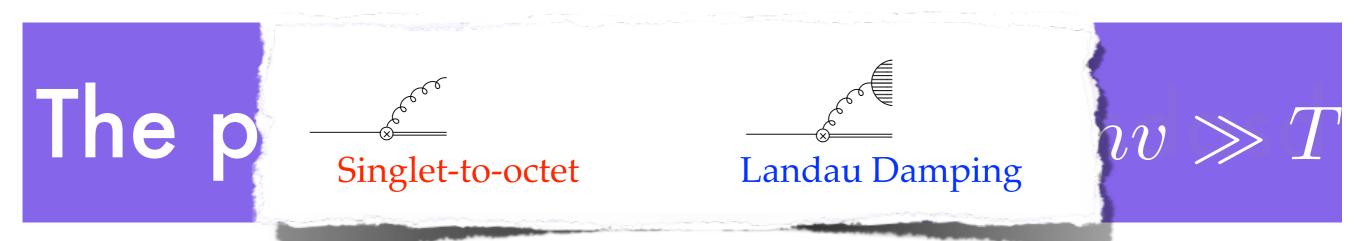
• The leading contribution is linear in the temperature

$$\begin{split} \Gamma_{1S} &= \frac{1156}{81} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ &- \frac{4}{3} a_0^2 \alpha_{\rm s} T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ &- \frac{32\pi}{3} \ln 2 a_0^2 \alpha_{\rm s}^2 T^3 \\ \hline E_1 &= -\frac{4}{9} m \alpha_{\rm s}^2, \qquad a_0 = \frac{3}{2m \alpha_{\rm s}} \end{split}$$

- The leading contribution is linear in the temperature
- Two mechanisms: singlet-to-octet thermal breakup and Landau damping

$$\begin{split} \Gamma_{1S} &= \frac{1156}{81} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ &- \frac{4}{3} a_0^2 \alpha_{\rm s} T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ &- \frac{32\pi}{3} \ln 2 a_0^2 \alpha_{\rm s}^2 T^3 \\ \hline E_1 &= -\frac{4}{9} m \alpha_{\rm s}^2, \quad a_0 = \frac{3}{2m \alpha_{\rm s}} \end{split}$$

- The leading contribution is linear in the temperature
- Two mechanisms: singlet-to-octet thermal breakup and Landau damping



$$\begin{split} \Gamma_{1S} &= \frac{1156}{81} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ &- \frac{4}{3} a_0^2 \alpha_{\rm s} T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ &- \frac{32\pi}{3} \ln 2 a_0^2 \alpha_{\rm s}^2 T^3 \\ \hline E_1 &= -\frac{4}{9} m \alpha_{\rm s}^2, \qquad a_0 = \frac{3}{2m \alpha_{\rm s}} \end{split}$$

- The leading contribution is linear in the temperature
- Two mechanisms: singlet-to-octet thermal breakup and Landau damping

The Polyakov loop (PL) and the Polyakov-loop correlator (PLC) are related to the thermodynamical free energies of a static quark and of a static QQ pair.

$$\langle L \rangle \equiv 1/N_c \left\langle \operatorname{Tr} \mathbf{P} \exp\left(-ig \int_0^{1/T} d\tau A_0(\mathbf{x},\tau)\right) \right\rangle = e^{-\frac{F_Q(T)}{T}} \qquad \langle L^{\dagger}(\mathbf{0})L(\mathbf{r}) \rangle = e^{-\frac{F_Q\overline{Q}(r,T)}{T}}$$

The Polyakov loop (PL) and the Polyakov-loop correlator (PLC) are related to the thermodynamical free energies of a static quark and of a static QQ pair.

$$\langle L \rangle \equiv 1/N_c \left\langle \operatorname{Tr} \operatorname{P} \exp \left(-ig \int_0^{1/T} d\tau A_0(\mathbf{x}, \tau) \right) \right\rangle = e^{-\frac{F_Q(T)}{T}} \qquad \langle L^{\dagger}(\mathbf{0}) L(\mathbf{r}) \rangle = e^{-\frac{F_Q(\overline{Q}(r, T))}{T}}$$

 We have computed both in perturbation theory. For the PL we correct the long-standing result, for the PLC our results, obtained for short distances, are new

Brambilla JG Petreczky Vairo PRD82 (2010)

• We have shown that, with pNRQCD in imaginary time, the correlator can be decomposed at short distances into gauge-invariant colour-singlet and octet free energies

- We have shown that, with pNRQCD in imaginary time, the correlator can be decomposed at short distances into gauge-invariant colour-singlet and octet free energies
- These free energies are quantitatively different from the realtime potentials

 $\operatorname{Im}(F) = 0, \operatorname{Im}(V) \neq 0 \quad \operatorname{Re}(F) \neq \operatorname{Re}(V)$

- We have shown that, with pNRQCD in imaginary time, the correlator can be decomposed at short distances into gauge-invariant colour-singlet and octet free energies
- These free energies are quantitatively different from the realtime potentials

 $\operatorname{Im}(F) = 0, \operatorname{Im}(V) \neq 0 \quad \operatorname{Re}(F) \neq \operatorname{Re}(V)$

• Intuitively $t \to \infty \neq it = \frac{1}{T}$

Brambilla JG Petreczky Vairo PRD82 (2010)

Conclusions

- Construction of an EFT framework for heavy quarkonia at finite temperature. Within this framework we can
 - Systematically take into account corrections and include all medium effects
 - Give a rigorous QCD derivations of the potential, bridging the gap with potentials models which appear as leading-order picture here
 - Compute potentials, spectra and widths in different regimes, with particular relevance for the new frontier of Y(1S) phenomenology
 - Study the relation between potentials and free energies

Outlook

- Take our EFT framework to the strong-coupling region, again following the path of the *T*=0 EFT. Lattice progress is needed, work in progress
- Phenomenological application to the Y(1S)
- Relation between our EFT widths and the previous approaches: Brambilla Escobedo JG Vairo JHEP1112 (2011), in prep. (2013)
- Application of the methodology to other problems, such as heavy quark energy loss

Publications

- Brambilla JG Petreczky Vairo **PRD78** (2008)
- Brambilla JG Vairo **PRD81** (2010)
- Brambilla Escobedo JG Soto Vairo JHEP1009 (2010)
- Brambilla JG Petreczky Vairo **PRD82** (2010)
- Brambilla Escobedo JG Vairo **JHEP1107** (2011)
- Brambilla Escobedo JG Vairo **JHEP1112** (2011)
- Berwein Brambilla JG Vairo, 1212.4413 in press on JHEP (2012)
- Brambilla Escobedo JG Vairo, in preparation (2013)