Messung des Kernladungsradius von Beryllium-12 mittels frequenzkammgestützter kollinearer Laserspektroskopie

Andreas Krieger

Dissertationspreis-Symposium

Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei

Motivation

 (a) Exotische Kernstrukturen
Modelunabhängiger Zugang zur Kernstruktur von Halo-Kernen

(b) Kernladungsradien sind Prüfsteine für Kernmodelle!

Benchmark für Kernstrukturmodelle, die auf individuellen Nukleon-Nukleon Potentialen basieren (Greens-Function Monte Carlo, No-Core Shell Modell, <u>Fermionic Molecular Dynamics</u>)

Motivation

GUTENBERG

GEMEINSCHAFT

Die Isotopieverschiebung

Annahmen: Der Kern ist unendlich schwer und punktförmig.

GUTENBERG.

GEMEINSCHAFT

 Frequenzunterschied eines elektronischen Übergangs zwischen zwei Isotopen

Beiträge zur Isotopieverschiebung

Die Isotopenfabrik ISOLDE/CERN

a

GEMEINSCHAFT

GUTENBERG.

Institut für Kernchemie an der Universität Mainz Dissertationspreis-Symposium Dresden 2013 7/16

a

GEMEINSCHAFT

GUTENBERG.

Institut für Kernchemie an der Universität Mainz Dissertationspreis-Symposium Dresden 2013 9/16

Anforderung: Absolutfrequenzmessung mit relativer Genauigkeit $\Delta v/v < 10^{-9}$

GUTENBERG

GEMEINSCHAFT

Experimenteller Aufbau

C

GEMEINSCHAFT

GUTENBERG

Institut für Kernchemie an der Universität Mainz Dissertationspreis-Symposium Dresden 2013 11/16

On-line Spektroskopie an ^{9,10,11}**Be**

C

On-line Spektroskopie an ¹²Be

Kernladungsradien der Berylliumisotope

Kernladungsradien der Berylliumisotope

Kernladungsradien der Berylliumisotope

Zusammenfassung

DARMSTADT

GEMEINSCHAF1

Online-Messung von Absolutfrequenzen der Berylliumisotope ^{9,10,11,12}Be bei Ionenströmen von weniger als 10 000 Ionen/s mit Unsicherheiten kleiner 1 MHz.

Kernladungsradien stellen wichtige Prüfsteine für Kernmodelle dar.

Magischer Schalenabschluss bei *N*=8 existiert nicht in Berylliumisotopen.

an der Universität Mainz

Danke...

Carl Zeiss Stiftung

Bundesministerium für Bildung und Forschung