Recent results in flavor physics

Johannes Albrecht (TU Dortmund)

DPG Hauptvortrag, 08. März 2013

інсь

Emmy Noether-Programm

> chungsgemeinschaft DFG

Indirect searches for new phenomena

Direct searches

Production and measurement of new particles

 \rightarrow Limit given by available energy

 \rightarrow O(1TeV) testable

Flavour Physics

Indirect searches

Measurement of new particles in quantum fluctuations

- \rightarrow Limit given by precision
 - \rightarrow O(100) TeV testable

8. März 2013

2/39 Hick

Outline

- Flavour physics == physics with heavy flavour decays
- Beauty physics
 - Beauty hadron production
 - Precision measurements of CP violation
 - Rare decays
- Charm & Kaon physics
 - Mixing and CP violation in charm decays
 - Rare charm decays
 - Lepton universality in Kaon decays
- Future flavour facilities
- This talk covers only few selected highlights

ALICE

LHCb.

ATLAS

The LHC as charm and beauty factory

CMS

LHC performance in 2012

- Luminosity levelling: stable running and trigger conditions for LHCb even with LHC running at high luminosity (L_{LHCb} = 4 x 10³²cm⁻²s⁻¹)
- Plans for 2015
 - $-\sqrt{s} = 13 \text{ TeV}$ (HF cross section x2)
 - Bunch spacing 25ns (smaller pileup)

B production @ $\sqrt{s=7TeV}$

- Many methods used:
 - I. (Di)Lepton tags (ATLAS_{[ATLAS-} CONF-2011-057],CMS [CMS-PAS-BPH-10-015]),
 - 2. D+µ tag (LHCb[PLB694 (2010)209]),
 - 3. Secondary vertex tagged jets (ATLAS [ATLAS-CONF-2011-056], CMS [CMS-PAS-BPH-10-009])
 - 4. Detached J/ψ (ATLAS [Nucl.Phys.B850(2011)387], CMS [EP].C71(2011)1575], LHCb [EP]C71 (2011)1645]),
 - 5. Fully reconstructed J/ψX (LHCb[LHCb-CONF-2011-033],CMS [PRL.106:112001.2011, PRL 106, 252001 (2011), arXiv:1106.4048])
- All measurements reasonably well described by theory (FONLL, MC@NLO) -- quite an achievement!

	L(fb ⁻¹)	σ _{acc} (μb)	bb / 10 ¹¹
ATLAS / CMS	27	75	2.7
LHCb	3	75	0.3
CDF / D0	9.5	2.8	0.03
Belle + BaBar	832+426	0.0011	0.001

Summer 2012 ATLAS Phys. Rev. D 87, 032002 (2013)

ATLAS 2011 full data set (4.9fb⁻¹)

▶ using fully reconstructed Λ_b→Λ J/ψ→(pπ) (µµ) decay

 $\begin{array}{ll} m(\Lambda_b) = & 5619.7 \pm 0.7 (stat) \pm 1.1 (syst) \; \text{MeV} \\ \tau(\Lambda_b) = & 1.449 \pm 0.036 (stat) \pm 0.017 (syst) \; \text{ps} \end{array}$

Fall 2012 CMS CMS BPH-11-013

 $\tau(\Lambda_b) = 1.503 \pm 0.052(stat) \pm 0.031(syst) \text{ ps}$

- X(3872) discovered by Belle ~10 years ago
 - Still unclear what X(3872) is
 - Knowledge of quantum numbers crucial for understanding its nature
 - $J^{PC} = 1^{++}$: DDbar molecule? Tetra quarks? $\chi_{c1} (2^{3}P_{1})$?
 - $J^{PC} = 2^{-+}$: $\eta_{c2}(1^1D_2)$?
- Measure decay $B^+ \rightarrow X(3872) K^+$

• Discriminate between quantum numbers by using the 5-D angular correlations $B^+ \rightarrow \psi(2S)K^+$: $N_{sig} = 5642 \pm 76$ $B^+ \rightarrow X(3872)K^+$: $N_{sig} = 313 \pm 26$ 2^{-+} rejected with a significance of 8.4 σ

Precision measurements of CP violation in beauty decays

 φ_{s} and γ

8. März 2013

CP violation in B_s mixing

- Interference between mixing and decay leads to CPV phase $\phi_s = \phi_M 2\phi_D$
- Precise SM calculation for ϕ_s possible (small penguin contribution)

 ϕ_s^{SM} = -0.0363±0.0016rad

CKMFitter, hep-ph:0406184

- Additional contributions from New Physics possible φ_s=φ_sSM +φ_s^{NP}
- Requires time dependent, flavour tagged angular analysis

CP violation in $B_s \rightarrow J/\psi \phi$

New @ LaThuile

LHCb-Paper-2013-002 to be submitted to PRD

- experimentally clean
- VV final state: angular analysis to separate CP even/odd components
- Use helicity frame to describe decay angles (cosθ_K, cosθ_{μ,} φ_h)
- Non-resonant KK (s-wave) comp.: CP odd

11/39 Hech

LHCb: CP violation in $B_s \rightarrow J/\psi \phi$

New @ LaThuile

Systematics - ϕ_s : Angular accept. ; $\Delta\Gamma$: Bckg + t accept.

 $B_s \rightarrow J/\psi \pi \pi$ is (pure) CP odd state \rightarrow no angular analysis

Repeat analysis of *PL B713* but using OST and SSKT information. (~7420 signal events)

<u>LHCb: CP violation in $B_s \rightarrow J/\psi \pi^+ \pi^-$ </u>

 $B_s \rightarrow J/\psi \ \pi\pi$ is (pure) CP odd state \rightarrow no angular analysis

1 fb⁻¹ LHCb Repeat analysis of PL B713 but 700 using OST and SSKT information. CP odd (~7420 signal events) Events (>97.7%) 500 400 Constrain Γ and $\Delta\Gamma$ to the J/ $\psi\phi$ result: 300 200E $\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01 \,\mathrm{rad}$ 100E LHCb-Paper-2013-002 500 1500 1000 m(π⁺π⁻) (MeV) Preliminary

New @ LaThuile $= 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst) rad},$ Simultaneous fit of $B_s\!\!\rightarrow J/\psi \;\pi\pi$ $= 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst)} \text{ ps}^{-1}$ Γ. and $B_s \rightarrow J/\psi \phi$ $\Delta \Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst)} \text{ ps}^{-1}$ Preliminary LHCb-Paper-2013-002 $\phi_{s}^{SM} = -0.0363 \pm 0.0016$ rad

8. März 2013

2000

Phys.Lett. B713 (2012) 378-386

 $P \rightarrow J/\psi\phi$

ATLAS: CP violation in $B_s \rightarrow J/\psi\phi$

- $\Delta\Gamma_{\rm s}$ measured with interesting precision
- ϕ_s has significant penalty

'-violating φ¹⁰phase 0; z axis $\Gamma_s = 0.677 \pm 0$ from $B_s \rightarrow J/\psi$ ⊎ rest fr

y axis: in the plane defined

 Ψ angle between the x axi

+ in the ϕ rest frame

Yes

 $\sim 100 \text{ fs}$

imuth

 $\phi_s^{SM} = -0.03 \phi_s^{CDF} = -0.03 \phi_s^{SM} = -0.03 \phi_s$ 15k

ATLAC Bomostic Solar Conference analyses measurements and SM prediction arxiv:1102.4274 [hep-ph]

LHCb 1.0 fb⁻¹ + CDF 9.6 fb⁻¹ + DØ 8 fb⁻¹ + ATLAS 4.9 fb⁻¹ 0.25 Signal Events Resolution Tagging HFAG DØ ATLAS 22.5k $\sim 100 \text{ fs}$ Sd 0.20 No Fall 2012 LHCb 21k $\sim 50 \text{ fs}$ Yes 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ CDF 11.5k $\sim 100 \text{ fs}$ Yes 0.15 LHCb DØ 6.5k $\sim 100 \text{ fs}$ Yes Combined 0.10 HCb,result used LHCb $1.0 \text{ fb}^{-1} + \text{CDF} 9.6 \text{ fb}^{-1} + \text{DØ} 8 \text{ fb}^{-1}$ CDF ate significantly SM 0.25 **ATLAS** improved HFAG DØ 0 Ц . . . Fall 2012 -0.5 0.5 0.20 -1.5 0.0 1.0 -1.0 1.5 68% CL contours $\phi_s^{c\overline{c}s}$ [rad] 8. März 2013 Johannes Albrecht 15/39

CKM angle y

Inconsistencies in CKM triangle might reveal new phenomena

Determination of γ from B \rightarrow DK decays

8. März 2013

Combination of $B \rightarrow DK$ results

Eingeladener Vortrag: M. Karbach T7.3

Rare beauty decays

Theory prediction: Standard Model

Zerfall	SM		
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹		
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰		

Review experiment: **J.A.**: MPL A27 1330028 (2012) SM: Buras, Isidori: arXiv:1208.0934

Left handed couplings → helicity suppressed

Measurement of exclusion limits or decay rates

Evidence for $B_s \rightarrow \mu^+ \mu^-$

Highlight after 25 years of searches (Argus 1987)

• New analysis: 3.5σ evidence for decay $B_s \rightarrow \mu^+\mu^-$ (HCP 12)

HCP2012

In good agreement with SM, but 40% uncertainty

Limits obtained by other experiments:

 $BR(B_s \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$

- CMS (5fb⁻¹): BR < 7.7 x 10^{-9} (sensitivity ~ LHCb with 2011+2012 dataset)
- ATLAS (2.4fb⁻¹): BR < 22 x 10⁻⁹
- CDF (10fb⁻¹): BR < 31 x 10⁻⁹

Allowed parameter space 2011:

- Future key measurement: ratio of decay rates of $B^0 \rightarrow \mu^+ \mu^- / B_s \rightarrow \mu^+ \mu^-$
 - Allows test of a new category of scenarios
 - → e.g. hypothesis of "Minimal Flavour Violation"

- - Sensitive to new phenomena via non-standard couplings

Best described with effective field theory

$$\hbox{Operator } \mathcal{O}_i \qquad \qquad B \to {{\cal K}^{*0}}\gamma \quad B \to {{\cal K}^{*0}}\mu^+\mu^- \quad B \to \mu^+\mu^- \qquad \qquad B^+ \!\!\! \to {{K}^+}\,\mu^+\mu^-$$

$$\int \mathcal{O}_7 \sim m_b (\bar{s}_L \sigma_{\mu\nu} b_R) F_{\mu\nu} \qquad \checkmark$$

$$\mathcal{O}_9 \sim (\bar{s}b)_{V-A}(\bar{\ell}\ell)_V$$
 \checkmark

$$\sum_{s}^{b}$$

 $\mathcal{O}_{10} \sim (\bar{s}b)_{V-A}(\bar{\ell}\ell)_A$ $\mathcal{O}_{S,P} \sim (\bar{s}b)_{S+P}(\bar{\ell}\ell)_{S,P}$ SM:

- - O_{S.P}~0
 - Helicity flipped operators O_i' suppressed by m_s/m_b

Overview: Experimental data in $b \rightarrow s \ell^+ \ell^-$

Experimental data: $b \rightarrow s \ell^+ \ell^-$ – number of events

# of evts	BaBar 2012 471 M BB	Belle 2009 605 fb ⁻¹	CDF 2011 9.6 fb ⁻¹	LHCb 2011/12 1 fb ⁻¹	 CP-averaged results vetoed <i>a</i>² region
$B^0 \to K^{*0} \ell \bar{\ell}$	$137 \pm 44^{\dagger}$	$247 \pm 54^{\dagger}$	288 ± 20	900 ± 34	around J/ψ and ψ' resonances
$B^+ \to K^{*+} \ell \bar{\ell}$ $B^+ \to K^+ \ell \bar{\ell}$	$153\pm41^{\dagger}$	$162\pm38^\dagger$	24 ± 6 319 ± 23	76 ± 16 1232 ± 40	[†] unknown mixture of B ⁰ and B [±]
$ \begin{array}{l} B^0 \ \rightarrow K^0_S \ell \bar{\ell} \\ B_S \ \rightarrow \phi \ell \bar{\ell} \end{array} $			32 ± 8 62+9	60 <u>+</u> 19 77 + 10	Babar arXiv:1204.3933 Belle arXiv:0904 0770
$B_s \rightarrow \mu \bar{\mu}$				emerging	CDF arXiv:1107.3753 + 1108.0695 + ICHEP 2012
$\Lambda_b \to \Lambda \ell \bar{\ell}$			51 ± 7		LHCb LHCb-CONF-2012-008 (-003, -006),
$B^+ \to \pi^+ \ \ell \bar{\ell}$		limit		25 <u>+</u> 7	arXiv:1205.3422 + 1209.4284 + 1210.4492 + 1211.2674

Outlook / Prospects

Belle reprocessed all data 711 fb⁻¹ \rightarrow final analysis ?

LHCb end of 2012 additional \gtrsim 2 fb⁻¹ and (5 – 7) fb⁻¹ by the end of 2017

ATLAS / CMS pursue also analysis of $B \to K^* \mu \bar{\mu}$ and $B \to K \mu \bar{\mu}$

Belle II / SuperB expects about (10-15) K events $B \to K^* \ell \bar{\ell} \ (\gtrsim 2020)$

[A.J.Bevan arXiv:1110.3901]

Constraints on Wilson coefficients

W. Altmannshofer et al. [arXiv:1206.0273]

8. März 2013

Johannes Albrecht

26/39 ///cp

Can turn constraints on Wilson coefficients in $\Delta F = 1 \ b \rightarrow s$ into constraints on the mass-scale of NP:

• Tree level contribution with $\mathcal{O}(1)$ couplings:

 $\mathcal{L}_{NP} \sim \frac{1}{\Lambda_{NP}^2} \mathcal{O}_{NP}$

- $\rightarrow \Lambda_{NP} > \mathcal{O}(15 \,\mathrm{TeV}) \mathcal{O}(140 \,\mathrm{TeV})$
 - Loop and CKM suppressed:

$$\mathcal{L}_{\mathsf{NP}}\sim rac{V_{tb}V_{ts}^{*}}{(4\pi)^{2}}rac{1}{\Lambda_{NP}^{2}}\mathcal{O}_{\mathsf{NP}}$$

 $\rightarrow \ \Lambda_{\mathsf{NP}} > \mathcal{O}(300 \, \mathrm{GeV}) \rightarrow \mathcal{O}(2 \, \mathrm{TeV})$

27/39

Branching fraction of $B^- \rightarrow \tau^- \nu$

28/39

Branching fraction of $B \rightarrow D^{(*)}\tau - \nu$

 Tree level decay, NP sensitivity very similar to $B^- \rightarrow \tau^- \nu$

Test SM by measuring the ratios

 $R(D) = \frac{BR(B \to D\tau \upsilon)}{BR(\overline{B} \to D\ell \upsilon)}$ and $R(D^*) = \frac{BR(B \to D^* \tau \upsilon)}{BR(\overline{B} \to D^* \ell \upsilon)}$

BaBar: 3.4 σ tension to SM

Interesting to compare

- Belle supports tension, update expected soon
- Babar Had. 2012 SM Babar Inc. 2011 Belle Had. 2009 Belle Inc. 2010 **Belle** Average Babar Had. 2012 Babar Inc. 2011 Belle Had. 2009 Belle Inc. 2010 Belle Average |-----+| SM 0.2 0 0.4 0.6 0.8 BR(D^(*)τν)/BR(D^(*) BR($B \rightarrow \tau - \nu$) and BR($B \rightarrow D^{(*)}\tau - \nu$)

M. Huschle, T40.4

Beauty physics ≠ flavour physics

Charm physics

- 1) ΔA_{CP}
- 2) Observation of charm mixing
- 3) $D^0 \rightarrow \mu^+ \mu^-$

Kaon physics

1) Lepton universality

Updates for D* tagged and new muon tagged analysis VERY soon

- Very small (<0.1%) CPV predicted in charm decays
 - Hard to calculate reliably
- Experimentally clean observable:

$$\Delta \mathbf{A}_{CP} = \mathbf{A}_{CP} (\mathbf{D}^{0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}) - \mathbf{A}_{CP} (\mathbf{D}^{0} \rightarrow \pi^{+} \pi^{-})$$

0.6 fb⁻¹ PRL viewpoint Phys.Rev.Lett. 108 (2012) 111602

 Charm mixing can be measured in the ratio of right sign vs wrong sign D⁰→Kπ decays

- LHCb has established mixing at 9.1σ
 - First observation of charm mixing by a single experiment

8. März 2013

Johannes Albrecht

32/39

- $D^0 \rightarrow \mu^+ \mu^-$ decays
 - Very strong GIM suppression
 - SM: $10^{-13} < B(D^0 \rightarrow \mu^+\mu^-) < 6 \times 10^{-11}$
 - [G. Burdman et al., PR D66 (2002)]

LHCb Measurement

→ Still orders of magnitude above SM,

paper with improved analysis in preparation

Lepton universality in Kaon decays: R_{κ}

- NA62 recently published the final $R_{K} = \frac{\underset{\Gamma(K^{\pm} \to e^{\pm}\upsilon)}{\Gamma(K^{\pm} \to \mu^{\pm}\upsilon)} = \underset{m_{\mu}^{2}}{\overset{m_{e}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{e}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{e}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{\mu}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{\mu}^{2}}{m_{K}^{2}}} + \underbrace{\delta R_{K}^{rad} corr}{\overset{m_{\mu}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{\mu}^{2}}{m_{\mu}^{2}}} + \underbrace{\delta R_{K}^{rad} corr}{\overset{m_{\mu}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{\mu}^{2}}{m_{\mu}^{2}}} + \underbrace{\delta R_{K}^{rad} corr}{\overset{m_{\mu}^{2}}{m_{K}^{2}} - \underset{m_{\mu}^{2}}{\overset{m_{\mu}^{2}}{m_{\mu}^{2}}} + \underbrace{\delta R_{K}^{rad} corr}{\overset{m_{\mu}^{2}}{m_{K}^{2}}} + \underbrace{\delta R_{K}^{rad} corr}{\overset{m_{\mu}^{2}}$

Discrete2012

- E949 result based on 7 events: Br (K⁺ $\rightarrow \pi^+ \nu \nu$) = (1.73^{+1.15}_{-1.05})*10⁻¹⁰ SM: BR ~ 8 x 10⁻¹¹
- $K^+ \rightarrow \pi^+ \nu \nu$ sensitive to NP contribution

NA62 plans to restart with the LHC 2015 and will collect O(100) $K^+ \rightarrow \pi^+ \nu \nu$ decays in 2 years and will perform a 10% measurement of V_{td}

Near future: (super) B Cories & LHC

- BaBar & Belle are analysing final dataset
 - Re-reconstruction with significantly increased the efficiencies
- Belle II is in preparation, commissioning scheduled for 2014

- LHC data from 2011+2012 not fully analysed
 - Most LHCb results use 1/3 of collected dataset
 - Similar situation for ATLAS & CMS heavy flavour measurements
- LHC will restart in 2015 with $\sqrt{s}=13$ TeV
 - Heavy flavour cross section x 2
 - LHCb plans detector upgrade for 2018

Essential features:

- Full software trigger: will readout into DAQ all subdetectors at 40 MHz (c.f. 1 MHz at present). This will improve efficiency compared with current hardware trigger, giving factor of two improvement for hadronic final states
- Increase operational luminosity to 10³³ cm⁻²s⁻¹ (and a possibility to raise still further to 2 x 10³³ cm⁻²s⁻¹)

Annual yields in muonic final states will increase 10x w.r.t. 2011, and 20x for hadronic decays. Aim to collect 50 fb⁻¹.

Туре	Observable	Current precision	LHCb 2018	LHCb 50fb ⁻¹
(pseudo)- scalar	$BR(B_{s} \rightarrow \mu^{+} \mu^{-})$	1.5 10 ⁻⁹	0.5 10 ⁻⁹	0.15 10 ⁻⁹
MFV	$\frac{BR(B_{s} \rightarrow \mu^{+}\mu^{-})}{BR(B_{d} \rightarrow \mu^{+}\mu^{-})}$	-	100%	35%
B _s mixing	2 β _s	0.1	0.025	0.008
EW penguins	$s_0 A_{FB}$	25%	6%	2%
	AL	0.25	0.08	0.025
UT triangle	γ	~12°	~4°	<1º

- No compelling evidence for physics beyond the SM yet
 - Heavy Flavour is very sensitive to new effects at high mass scales
 - All NP theories must satisfy stringent experimental constraints
- Experiments have not confirmed effects with marginal statistical significance (however, some remain)
 - Will some stand when precision improves?
- We are looking forward to new flavour physics discoveries
 - from the LHC & its upgrades
 - From Belle II and Na62
 - Or other experiments (BESIII, MEG,)

- Thanks for suggestions and information
 - Stephanie Hansmann-Menzemer
 - Ulrich Uwer
 - Rainer Wanke
 - Wolfgang Walkowiak
 - Jochen Dingfelder
 - Thomas Kuhr
 - Soeren Lange
 - Christoph Bobeth

 Lm_B

L

 B_s^0

t =

PV

- Precision measurements of B_s mixing
 - Decay time dependent analysis of $B_s \rightarrow D_s \pi$ decays
 - Dominant systematics: decay length & momentum scale

New @ MEW, preliminary

$$\Delta m_s = 17.768 \pm 0.023^{stat} \pm 0.006^{syst} \, ps^{-1}$$

flavour specific

final state

 π^{-}

 π

 D_s^-

CP violation in B_s mixing

LHCb-CONF-2012-022

<u>Problem:</u> Production asymmetry at LHC \Rightarrow Use quickly oscillating B_s mesons only

$$\frac{a_{\rm sl}^s}{2} = \frac{N(D_s^-\mu^+) - N(D_s^+\mu^-)}{N(D_s^-\mu^+) + N(D_s^+\mu^-)}$$

Main syst.: L0 µ-trigger efficiency

Consistent with Standard Model $a_{
m sl}^s = (1.9 \pm 0.3) \times 10^{-5}$ (A.Lenz)

- Maximum likelihood fit with 10 physics parameters
 - 7 angular amplitudes and phases
 - $\Gamma_{s}, \Delta\Gamma_{s}, \phi_{s}$
- Proper time calibrated with prompt J/ ψ : σ (t)~50ps
- Used Opposite sign flavour tagging, εD²=(2.08±0.41)%

LHC(b) long term plan

45/39 *Hicp*

- Yet unobserved FCNC decay, SM prediction: $\mathcal{B}(K^0_{\rm S} \to \mu^+\mu^-) = (5.0 \pm 1.5) \times 10^{-12}$ Nucl. Phys. B366 (1991) 189,
 - $K_s \rightarrow \mu^+ \mu^-$ sensitive to light scalars
- Previous best limit from 1973
 - $BR(K_s \rightarrow \mu^+ \mu^-) < 3.2 \times 10^{-7}$ PLB44 (1973) 217
- LHCb analysis (~10¹³ K_s / fb⁻¹):
 - Excellent mass resolution enables to separate the $K_s \rightarrow \pi^+\pi^-$ misID peak
 - Discrimination through a BDT (geometric and kinematic), trained and calibrated on data
 - Signal proxy: $K_s \rightarrow \pi^+ \pi^-$
 - Background from upper mass sideband
 - Normalization $K_s \rightarrow \pi^+\pi^-$

8. März 2013

46/39

- Limits from CLs:
 - expected: BR($K_s \rightarrow \mu^+ \mu^-$) < 11 x 10⁻⁹
 - observed: BR($K_s \rightarrow \mu^+ \mu^-$) < 11 x 10⁻⁹
- These limits improve the existing worlds best limits by a factor 35

• 2011 trigger was not optimized for $K_s \rightarrow \mu^+\mu^ \rightarrow$ 2012 is, good prospects for this analysis

8. März 2013

48/39 *Инср*

$B^+ \to \tau^+ \nu_{\tau}$

- Major differences from 2006 analysis
 - Reprocessing of full Belle data set (2011)
 - \rightarrow Improved detection efficiencies of low p_T tracks and neutral particles
 - Added 322M more $B\overline{B}$ data in addition to previous 449M
 - New sophisticated hadronic tagging algorithm

 \rightarrow Based on neural net & Bayesian interpretation

 \rightarrow More *B*/*D* decay modes included for the tag

• Signal extraction by 2D fit to (E_{ECL}, M_{miss}^2)

 \rightarrow Improved handling of peaking backgrounds

Definition of variables

 $M_{miss}^2 = (E_{CM} - E_{B_{tag}} - E_{B_{sig}})^2 - (P_{B_{tag}} - P_{B_{sig}})^2$ E and $P_{B_{tag}}$: Energy and momentum of the tagged-B E and $P_{B_{sig}}$: Energy and momentum of signal side B particles $E_{ECL} =$ Extra energy in ECL aside from those contributed via tagged-B and signal-B constituents

$$\begin{array}{c} \tau \text{-decays used} \\ \tau^- \to e^- \bar{\nu_e} \nu_\tau \\ \tau^- \to \mu^- \bar{\nu_\mu} \nu_\tau \\ \tau^- \to \pi^- \nu_\tau \\ \tau^- \to \rho^- \nu_\tau \end{array}$$

Y. Yook

July 5, 2012

Leptonic & Semileptonic Decays at Belle @ ICHEP 2012

Johannes Albrecht

49/39 🚻

13

New results on the search for $B_s \rightarrow \mu^+ \mu^-$ from LHCb

Johannes Albrecht (CERN & TU Dortmund) on behalf of the LHCb Collaboration

> Hadron Collider Physics Symposium 2012 November 12 - 16, 2012 Kyoto, Japan

Datasets

LHCb Integrated Luminosity in 2011 and 2012

- Combined analysis of the following datasets:
 - 1.1fb⁻¹ of data at $\sqrt{s}=8TeV$ (2012) increased bb-production cross section
 - 1.0fb⁻¹ of data at $\sqrt{s}=7$ TeV (2011)
- First analysis of the data recorded in 2011 published PRL108(2012)231801
 - mid-september
 - Measurement presented here is similar to this previous analysis
 - improvements over the previous publication are implemented
- Full 2011 data set reanalysed \rightarrow It supersedes the previous publication

Selection

 Soft selection to reduce size of dataset, similar to control channels unchanged to previous analyses

Normalization

- Convert number of observed events in branching fraction by normalizing to $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B \rightarrow K^{+}\pi^{-}$

$$BR = BR_{cal} \cdot \frac{\varepsilon_{cal}^{\text{Rec}} \cdot \varepsilon_{cal}^{\text{Sel}}}{\varepsilon_{Bs}^{\text{Rec}} \cdot \varepsilon_{Bs}^{\text{Sel}}} \frac{f_{cal}}{f_{B_s}} \cdot \frac{N_{B \to \mu\mu}}{N_{cal}} = \alpha \cdot N_{B \to \mu\mu}$$
from MC from fraction b \rightarrow B_s
data checked data (updated, next slide)
$$\frac{\text{Normalization factors}}{\alpha(B_s \to \mu^+\mu^-) = (2.52 \pm 0.23) \times 10^{-10}} \alpha(B^0 \to \mu^+\mu^-) = (6.45 \pm 0.30) \times 10^{-11}$$

Slightly lower than in 2011 measurement due to higher \mathcal{L} and x-section

- LHCb has measured the fraction of $b \rightarrow B_s$ in two ways:
 - − Ratio of $B_s \rightarrow D_s \mu X$ to $B \rightarrow D^+ \mu X$
 - − Ratio of $B_s \rightarrow D_s \pi^+$ to $B \rightarrow D^+ K$ and $B^0 \rightarrow D^+ \pi^+$

Combined result $\frac{f_s}{f_d} = 0.256 \pm 0.020$

[PRD85 (2012) 032008] (newly updated:

1fb⁻¹ @ 7 TeV)

[LHCb-PAPER-2012-037] in preparation

- Found to be dependent of p_T
 - For the p_T values involved:
 effect smaller than 0.02
 → negligible
- Stability 7 vs 8 TeV checked
 - B^+ →J/ψK⁺/B_s→J/ψφ ratio stable

LHCb analysis II

- Signal likelihood
 - BDT for signal classification (unchanged to previous analysis)
 - Signal PDF calibrated with $B_{(s)} \rightarrow h^+h^{-1}$
 - Compared to 2011 analysis, BDT shape moved to slightly lower values
 - Invariant mass, resolution:
 - σ(B⁰→μμ) = 24.63 ± 0.38^{stat+syst} MeV/c²
 - $\sigma(B_s \rightarrow \mu\mu) = 25.04 \pm 0.40^{\text{stat+syst}} \text{ MeV/c}^2$ \rightarrow Well comparable to 2011 analysis

Background likelihood:

- Main background: comb
 → background extrapola
- Improved description of below signal window (se)
- Extraction of the result
 - Extract observation / exclusion measurement using the CLs method
 - Determine branching fraction with unbinned ML fit

Johannes Albrecht

t⁻X

Peaking backgrounds

- Improvement of combinatorial background interpolation by inclusion of backgrounds from exclusive decays in the fit
 - Contribution in signal window: only $B_{(s)} \rightarrow h^+h^{-1}$ (identical treatment as 2011)
 - Mass shape different from exponential
 → bias the background interpolation (new):
 - $B^0 \rightarrow \pi^+ \mu^- \nu$
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$, $B^0 \rightarrow \pi^0 \mu^+ \mu^-$ (considered together) Both have a negligible contribution in the B⁰ and B_s mass windows
- Exclusive background parameters used as priors in the fit (allowed to vary within 1σ)
 - Yield from relative normalization to $B^+ \rightarrow J/\psi K^+$
 - Mass and BDT shape from full MC
- Background systematic reduced (2011 was comparison exp-double exp)

Observed pattern of events

 Mass sideband fit to extrapolate background

> - Combinatorial background and $B^0 \rightarrow \pi^+ \mu^+ \nu$ $B \rightarrow \pi \mu^+ \mu^ B_{(s)} \rightarrow h^+ h^{-} (misID)$

- Same fit has been repeated on 2011
 - Combinatorial component reduced in high BDT bins
 - Impact on published results evaluated

12. November 2012

Johannes Albrecht

56/16

${ m B}^0\!\! ightarrow\mu^+\mu^-$	expected (bkg)	expected (SM+bkg)	observed	1-CLb
2012	9.6 x 10 ⁻¹⁰	10.5 x 10 ⁻¹⁰	12.5 x 10 ⁻¹⁰	0.16
2011+2012	6.0 x 10 ⁻¹⁰	7.1 x 10 ⁻¹⁰	9.4 x 10 -10	0.11

12. November 2012

• Evaluate compatibility with background only and background+signal hypotheses (CLs method)

• This is the first evidence of the decay $B_s \rightarrow \mu^{1.0 \text{ fb}^{-1}(7T_eV) + 1.}$

66

12. November 2012

Results for $B_s \rightarrow \mu^+ \mu^-$: BR fit

- Simultaneous unbinned likelihood fit to 15 BDT bins of 2011 + 2012
 - Combinatorial bkg, B_s and B⁰ yield fully free
 - Exclusive backgrounds inserted as Gaussian constraints

• Fit result:

 $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) =$ 3.2^{+1.4}_{-1.2}(stat)^{+0.5}_{-0.3}(syst) × 10⁻⁹

- Systematic Uncertainties
 - Change bkg model
 - Fix all Gaussian constraints

59/16

12. November 2012

Conclusions

LHCb

BDT > 0.5

6000

1.0 fb⁻¹(7TeV) +1.1 fb⁻¹(8TeV)

- Combined analysis on 1.0fb⁻¹ @ √s=7TeV and 1.1fb⁻¹ @ √s=8TeV
- Upper exclusion limit @ 95% CL BR(B⁰ $\rightarrow \mu^{+}\mu^{-}$) < 9.4 x 10⁻¹⁰ worlds best single experiment limit

20

15

0

5000

- Excess of B_s- ⁻ signal signific deviations (bkg only p-va
- The branching

$$BR(B_s \rightarrow \mu$$

5500

