

The Higgs Boson : Latest Measurements and Perspectives

Thomas Muller (KIT), on behalf of the ATLAS and CMS Collaborations

Outline:

- Introduction
- Bosonic decay channels (γγ, ZZ, WW)
- Fermionic decays (ττ, bb)
- Properties: Mass, Couplings, Spin/Parity
- Expectations for 300 fb⁻¹ and 3000 fb⁻¹

Summary

No details on:

- Object reconstruction, event selection
- Background estimation and systematics
- Statistical analyses

I leave out:

Presentations on this Tagung

D DPG

PV V Plenarvortrag: Entdeckung eines Higgs-artigen Teilchens am LHC – •KARL JAKOBS

PV VIII Abenavortrag: Das Higgs-Boson: Sind alle Katsel gelöst? - Neues vom Teilchenbeschleuniger LHC — •ARNO STRAESSNER

- T 5.1 Hauptvortrag: Die Entdeckung des Higgs-Bosons: aktuelle Ergebnisse und Perspektiven — •THOMAS MÜLLER
- T 7.5 Eingeladener Vortrag: Search for Higgs and other bosons in beyond standard model physics with CMS – •ADRIAN PERIEANU
- T 8.3 Eingeladener Vortrag: Suche nach dem Higgs-Boson des Standard-Modells im Zerfall $H \rightarrow \tau \tau$ mit ATLAS •STANLEY LAI
- T 8.5 Eingeladener Vortrag: Messungen der Higgs-Boson-Eigenschaften mit dem ATLAS Experiment – •JOHANNES ELMSHEUSER
- T 9.1 Preisträgervortrag: Observation and study of the Higgs boson candidate in the diphoton decay channel with the ATLAS detector — •KERSTIN TACKMANN
- T 44.1 Suche nach geladenen Higgs-Bosonen im Zerfall $H^+ \rightarrow \tau v$ mit dem ATLAS-Experiment MARTIN FLECHL, •ANNA KOPP und MARKUS SCHUMACHER
- T 44.2 Neutral MSSM Higgs search in the $\Phi \rightarrow \tau \tau$ decay channel •Felix Frensch, Martin Niegel, Stefan Wayand, Fedor Ratnikov, Florian Weiser, Artur Speiser, Christian Lüdtke, Roger Wolf, Wim de Boer, and Dimitri Kazakov
- T 44.3 Studien zum Entdeckungspotential für das Higgs-Boson im Zerfall $H \rightarrow \tau \tau \rightarrow H + 4 v - Michael$ Böhler, Martin Flechl, Michel Janus, Stan Lai, •JulianMaluck und Markus Schumacher
- T 44.4 Untersuchung von Higgs-Boson-Zerfällen in TT-Endzuständen am CMS-Experiment des LHC – •THOMAS MÜLLER, GÜNTER QUAST, MANUEL ZEISE, RAPHAEL FRIESE, FRENSCH FELIX, ALEXEI RASPEREZA, AGNI BETHANI UND ARMIN BURGMEIER
- T 44.5 Suche nach neutralen Higgs-Bosonen im MSSM im Kanal $h/H/A \rightarrow \tau \tau \rightarrow lh$ bei ATLAS •FELX FRIEDRICH, ARNO STRAESSNER und WOLFGANG MADER
- T 44.6 Suche nach neutralen MSSM-Higgsbosonen im Zerfallskanal $h/H/A \rightarrow \tau^+\tau^- \rightarrow lh$ bei ATLAS •TAN WANG, JÜRGEN KROSEBERG und JOCHEN DINGFELDER
- T 44.7 Theoretische Unsicherheiten bei der Suche nach neutralen MSSM Higgs-Bosonen mit ATLAS — •LORENZ HAUSWALD, FELIX FRIEDRICH, SEBASTIAN WAHRMUND, MARCUS MORGENSTERN, CHRISTIAN RUDOLPH, WOLFGANG MADER und ARNO STRAESSNER
- T 44.8 Untersuchung des Higgs-Sektors des NMSSM am LHC – •FLORIAN WEISER, WIM DE BOER, FEDOR RATNIKOV, STEFAN WAYAND, FELIX FRENSCH, CONNY BESKIDT, CHRISTIAN LÜDTKE, ARTUR SPEISER, MARTIN NIEGEL UND DANIEL TRÖNDLE

- T 45.1 Suche nach schweren neutralen MSSM Higgs Boson Zerfällen im voll-hadronischen tt Kanal – •MARCUS MORGENSTERN, DIRK DUSCHINGER, WOLFGANG MADER, ARNO STRAESSNER und SEBASTIAN WAHRMUND
- T 45.2 Search for the neutral MSSM Higgs bosons in the final state with hadronically decaying T pairs at the ATLAS experiment •FEDERICO SCUTTI, JOCHEN DINGFELDER, and WILL DAVEY
- T 45.3 $Z \rightarrow \tau \tau$ Embedding Studies for the $H \rightarrow \tau \tau$ Search at the CMS experiment •ARMIN BURGMEIER, MANUEL ZEISE, and CHRISTIAN VEELKEN
- T 45.4 Modellierung von Z→TT Untergrund im Rahmen der Higgssuche in ATLAS – •JESSICA LIEBAL, THOMAS SCHWINDT, JÜRGEN KROSEBERG UND NORBERT WERMES
- T 45.5 Suche nach neutralen Higgs-Bosonen im Zerfallskanal $H \rightarrow \tau \tau \rightarrow //4 \nu$ mit dem ATLAS-Detektor •Christian Schillo, Michel Janus, Michael Böhler, Dirk Sammel, Stan Lai und Markus Schumacher
- T 45.6 Optimierungsstudien zur Suche nach dem SM Higgs-Boson im VBF-Kanal $qq(H) \rightarrow \tau_{lep} \tau_{lep}$ mit ATLAS — •ERIC DRECHSLER, KATHARINA BIERWAGEN, ULLA BLUMENSCHEIN UND ARNULF QUADT
- T 45.7 Suche nach dem Higgs-Boson des Standardmodells mit multivariaten Methoden im Endzustand $H \rightarrow \tau \tau \rightarrow$ //+4v mit dem ATLAS-Detektor — •DIRK SAMMEL, MICHAEL BÖHLER, MICHEL JANUS, STAN LAI und MARKUS SCHUMACHER
- 45.8 Multivariate Techniken zur Identifikation von H→ττ→µµ-Zerfällen — •RAPHAEL FRIESE, THOMAS MÜLLER, MANUEL ZEISE und GÜNTER QUAST
- 45.9 Search for the Higgs particle decaying into Tau leptons in the Electron-Electron channel with the CMS Experiment •JAKOB SALFELD and ALEXEI RASPEREZA

- T 46.1 Multivariate Suche nach dem Standardmodell Higgs-Boson im Zerfallskanal $H \rightarrow \tau^+ \tau^- \rightarrow l \vee \nu$ hac v mit dem ATLAS-Experiment — KARL JAKOBS, ROMAT MADAR und •HELGE HASS
- T 46.2 Suche nach dem Standardmodell Higgs-Boson im Zerfallskanal $H \rightarrow \tau^+ \tau^- \rightarrow I v_N \tau$ had v_{τ} mit dem ATLAS-Experiment •NILS RUTHMANN, KARL JAKOBS und ROMAI MADAR
- T 46.3 Suche nach dem Standardmodell Higgs-Boson im Zerfall H→T_{lep}T_{had} — •JANA KRAUS, THOMAS SCHWINDT, JESSICA LIEBAL, JÜRGEN KROSEBERG und NORBERT WERMES
- T 46.4 Suche nach Higgs-Ereignissen mit zwei hadronisch zerfallenden Tau-Leptonen bei CMS – VLADIMIR CHEREPANOV, GÜNTER FLÜGGE, •BASTIAN KARGOLL, ALEXANDER NEHRKORN, IAN M. NUGENT, LARS PERCHALLA UN ACHIM STAHL
- T 46.5 Search for the SM Higgs boson in the fully hadronic di-tau final state with the ATLAS experiment at the LHC — ●DANIELE ZANZI, JOHANNA BRONNER, SANDRA KORTNER, ALESSANDRO MANFREDINI, RIKARD SANDSTRÖM, AN SEBASTIAN STERN
- T 46.6 Studien zur Suche nach $H \rightarrow \mu^+\mu^-$ Zerfällen beim ATLAS Experiment am LHC — •FRIEDRICH HÖNIG, JOHANNES ELMSHEUSER und DOROTHEE SCHAILE
- T 46.7 Acceptance Systematics from Theory uncertainties in the $H \rightarrow \mu \mu$ analysis at ATLAS •CHRISTIAN RUDOLPH, WOLFGANG MADER, and MICHAEL KOBEL
- T 46.8 Untersuchung des myonischen Zerfallskanals des Higgs Bosons im Kontext des Standard Modells und seiner minimal supersymmetrischen Erweiterung – •HENDRIK WEBER und ADRIAN PERIEANU
- T 46.9 Suche nach neutralen MSSM Higgsbosonen im Zerfallskanal $h/H/A \rightarrow \mu^+\mu^-$ mit dem ATLAS Detektor — JOHANNA BRONNER, SANDRA KORTNER, ALESSANDRO MANFREDINI, RIKARD SANDSTROEM, •SEBASTIAN STERN UND DANIELE ZANZI

- T 47.1 Studien zu $H \rightarrow W^+W^-$ Zerfällen beim ATLAS Experiment am LHC – •CHRISTIAN MEINECK, BONNIE CHOW, PHILIPP HEIMPEL, JOHANNES ELMSHEUSER und DOROTHEE SCHAILE
- T 47.2 Boosted decision tree studies in $H \rightarrow WW$ searche ATLAS — •BONNIE CHOW, JOHANNES ELMSHEUSER, PHI HEIMPEL, CHRISTIAN MEINECK, and DOROTHEE SCHAILE
- T 47.3 Suche nach dem Higgs-Boson in $H \rightarrow W^+W^-$ Zerfällen mit Boosted Decision Trees beim ATLAS Experiment am LHC — •PHILIPP HEIMPEL, BONNIE CH CHRISTIAN MEINECK, JOHANNES ELMSHEUSER und DOROI SCHAILE
- T 47.4 Analyse des SM Higgs-Zerfalls im Kanal H→ WW vµv mit dem ATLAS-Detektor — •Sebastian Mori Olivier Arnaez, Volker Büscher, Frank Fiedler, Pai-hsien Jennifer Hsu, Johannes Mattmann, Christi Schmitt und Natalie Wieseotte
- T 47.5 SM H→WW→ℓvℓv analysis with the ATLAS detecto the LHC — •PAI-HSIEN JENNIFER HSU, OLIVIER ARNAEZ, VOLKER BÜSCHER, FRANK FIEDLER, JOHANNES MATTMANN, SEBASTIAN MORITZ, CHRISTIAN SCHMITT, and NATALIE WIESEOTTE
- T 47.6 Suche nach dem Higgs-Boson in VBF-Produktion Zerfallskanal H→ WW → tvtv mit dem ATLAS-Detektor — •JOHANNA BRONNER, SANDRA KORTNER, HUBERT KROHA, SEBASTIAN STERN, DANIELE ZANZI UND ALESSANDRO MANFREDINI
- T 47.7 Untersuchung der Kopplungsstärken des Higgs-Bosons im $H \rightarrow WW \rightarrow h/V$ Zerfallskanal mit Hilfe von neuronalen Netzen mit dem ATLAS Experiment – • GUNAR ERNIS, DOMINIC HIRSCHBÜHL, SIMON KÖHLMANN und WOLGANG WAGNER
- T 47.8 Suche nach dem Higgs-Boson im Zerfall $H \rightarrow WW^*$ $\ell \vee \ell' \vee'$ mithilfe von multivariaten Analysemethoden mit dem CMS-Experiment ULRICH HUSEMANN, PATRICIA LOBELLE und •JAN MÜLLER
- T 47.9 Suche nach einem weiteren Higgs-Boson im $H \rightarrow WW \rightarrow \ell v \ell v$ Zerfallskanal mit dem ATLAS Experiment GUNAR ERNIS, DOMINIC HIRSCHBÜHL, •SIMON KÖHLMANN und WOLFGANG WAGNER
- T 47.10 Untersuchung der Spin- und CP-Eigenschaften des neu entdeckten Bosons im Zerfall in zwei Photonen produziert in Vektorbosonfusion mit dem ATLAS Detektor — •FLORIAN KISS, MARTIN FLECHL und MARKUS SCHUMACHER
- T 47.11 Bestimmung der totalen Higgs-Zerfallsbreite durch WW-Fusion am ILC – •CLAUDE DÜRIG, KLAUS DESCH und PHILIP BECHTLE

T 48.1 Suche nach $H \longrightarrow b\overline{b}$ Zerfällen in assoziierter Produktion mit einem Z-Boson beim ATLAS Experiment am LHC — •THOMAS MAIER, MICHIEL SANDERS, DOROTHEE SCHAILE, DAN VLADOIU UND JONAS WILL

- T 48.2 Multivariate Analysen zur Suche nach Standardmodell Higgs-Zerfällen in b-Quarks mit ATLAS — •STEPHAN HAGEBÖCK, GÖTZ GAYCKEN, JAN THERHAAG, ECKHARD VON TOERNE UND NORBERT WERMES
- T 48.3 Suche nach dem Standardmodell Higgs-Boson im Zerfallskanal $H \rightarrow b$ b mit dem ATLAS-Experiment und multivariaten Methoden KARL JAKOBS, CHRISTIAN WEISER, GEORGES AAD und •DANIEL BÜSCHER
- T 48.4 Suche nach dem Standardmodell Higgs-Boson im Kanal $t\bar{t}H$, $H \rightarrow b\bar{b}$ mit dem CMS Experiment am LHC •TOBIAS VERLAGE
- T 48.5 Suche nach Higgs-Boson-Produktion in Assoziation mit einem Top-Quark-Paar am CMS-Experiment — OLAF BÖCKER, ALEXIS DESCROIX, ULRICH HUSEMANN, PATRICIA LOBELLE und •HANNES MILDNER
- T 48.6 Search for MSSM H->bb JOERG BEHR, WOLFGANG LOHMANN, RAINER MANKEL, •IHAR MARFIN, ALEXEI RASPEREZA, ALEXANDER SPIRIDONOV, and ROBERVAL WALSH
- T 48.7 Suche nach ttH Ereignissen mit der Matrix Element Method am ATLAS Experiment – •OLAF NACKENHORST, ELIZAVETA SHABALINA, KEVIN KRÖNINGER, ARNULF QUADT und LEONID SERKIN
- T 48.8 MC modelling uncertainty studies of the *tH* process — •STEFFEN HENKELMANN, ELIZAVETA SHABALINA, KEVIN KRÖNINGER, and ARNULF QUADT
- T 48.9 Optimization of multivariate techniques for searches of *ttH* events in ATLAS at the LHC — KEVIN KRÖNINGER, ARNULF QUADT, •LEONID SERKIN, and ELIZAVETA SHABALINA
- T 48.10 Search for Light NMSSM Higgs Boson Production in bb Final States with the CMS Experiment — •GREGOR HELLWIG, RAINER MANKEL, ALEXEI RASPEREZA, and ROBERVAL WALSH

- T 49.1 Discovery of a new Higgs-like particle in the diphoton decay channel with ATLAS •JANA SCHAARSCHMIDT and LOUIS FAYARD
- T 49.2 Suche nach dem Higgs-Boson im Kanal $pp \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ und Massenmessung mit dem ATLAS-Detektor •KATHARINA ECKER, MAXIMILIAN GOBLIRSCH-KOLB, OLIVER KORTNER, SANDRA KORTNER und HUBERT KROHA
- T 49.3 Search for *H*→ *WW*→ *l*v *qq* decays in ATLAS •RIKARD SANDSTRÖM, JOHANNA BRONNER, DANIELE ZANZI, SANDRA KORTNER, ALESSANDRO MANFREDINI, and SEBASTIAN STERN
- T 49.4 Optimierung bei der Suche nach dem durch Vektorbosonfusion erzeugten SM Higgs-Boson im Zerfallskanal H→WW→₹V₹V — •NATALIE WIESEOTTE, OLIVIER ARNAEZ, VOLKER BÜSCHER, FRANK FIEDLER, PAI-HSIEN JENNIFER HSU, JOHANNES MATTMANN, SEBASTIAN MORITZ UND CHRISTIAN SCHMITT
- T 49.5 Search for the Standard Model Higgs boson production via vector-boson fusion in the $H \rightarrow W^{\pm}W^{\mp(*)} \rightarrow \ell^+ \vee \ell^{\prime-} \nabla^{\prime}$ channel KARL JAKOBS, TUAN VU ANH, and •ANDREAS WALZ
- T 49.6 Studien zu einem Higgs-artigen Boson im Zerfallskanal WH→łvbb mit dem CMS-Experiment — •CHRISTIAN BÖSER, THORSTEN CHWALEK, SIMON FINK, HAUKE HELD, BENEDIKT MAIER, THOMAS MÜLLER, PHILIPP SCHIEFERDECKER, FRANK-PETER SCHILLING UND JEANNINE WAGNER-KUHR
- T 49.7 Suche nach *H*→T_{*lep*T_{*had*} Zerfällen mit multi-variaten Methoden in ATLAS – •THOMAS SCHWINDT, JANA KRAUS, JESSICA LIEBAL, JÜRGEN KROSEBERG und NORBERT WERMES}
- T 49.8 Untersuchung von Spin und CP-Eigenwert des Higgs-Boson-Kandidaten im Zerfallskanal $H \rightarrow WW \rightarrow e v_e \mu$ v_{μ} bei ATLAS — •JOHANNES MATTMANN, OLIVIER ARNAEZ, VOLKER BÜSCHER, FRANK FIEDLER, PAI-HSIEN JENNIFER HSU, SEBASTIAN MORITZ, CHRISTIAN SCHMITT UND NATALIE WIESEOTTE
- T 49.9 Study of the spin and CP of the Higgs-like resonance through a multivariate analysis in the $H \rightarrow WW^{(*)} \rightarrow \ell \lor \ell' \lor'$ channel with the ATLAS Detector — •MANUELA VENTURI, KARL JAKOBS, and TUAN VU-ANH

Also: recent summary talks by K. Tackmann, S. Dittmeier at the 6th Ann. Workshop of the Helmholtz-Alliance TERA in Dec. 2012

Thomas Müller, Institut für Experimentelle Kernphysik

Recent Public Infomations from ATLAS and CMS

Channel	Conference note	L (fb ⁻¹)	Date	Publication	L (fb ⁻¹)	Date
SM H combination	ATLAS- CONF-2012-170	4.9+13.0	Dec 2012	arXiv:1207.7214	4.9+5.9	Jul 2012
SM H to ZZ(*) to 4I	ATLAS- CONF-2012-169	4.8+13.0	Dec 2012	arXiv:1202.1415	4.8	Feb 2012
SM H to diphoton	ATLAS- CONF-2012-168	4.9+13.0	Dec 2012	arXiv:1202.1414	4.9	Feb 2012
Lepton Universality Violation Charged Higgs	-	4.7	Dec 2012	Paper	4.6	Feb 2012
SM H couplings	ATLAS- CONF-2012-127	4.9+5.9	Sep 2012	-	-	-
SM H combination	ATLAS- CONF-2012-162	4.9+13.0	Nov 2012	arXiv:1207.7214	4.9+5.9	Jul 2012
SM H to diphoton	ATLAS- CONF-2012-091	4.9+5.9	Jul 2012	arXiv:1202.1414	4.9	Feb 2012
SM H to ZZ(*) to 4I	ATLAS- CONF-2012-092	4.8+5.8	Jul 2012	arXiv:1202.1415	4.8	Feb 2012
SM H to WW to IvIv SM H to WW to IvIv (MVA)	ATLAS- CONF-2012-158 ATLAS- CONF-2012-060	4.7+13.0 4.7	Nov 2012 Jun 2012	arXiv:1206.0756	4.7	Jun 2012
SM WH, H to WW	ATLAS- CONF-2012-078	4.7	Jul 2012	-	-	-
SM H to tautau	ATLAS- CONF-2012-160	4.7+13.0	Nov 2012	arXiv:1206.5971	4.7	Jun 2012
SM VH, H to bb	ATLAS- CONF-2012-161	4.7+13.0	Nov 2012	arXiv:1207.0210	4.7	Jun 2012
SM ttH, H to bb	ATLAS- CONF-2012-135	4.7	Sep 2012	-	-	-
SM H to ZZ to IIvv	ATLAS- CONF-2012-016	4.7	Mar 2012	arXiv:1205.6744	4.7	May 2012

Nov 2012	2011/2 (HCP) data: H > 77 > 4	TMIKI DAS
1100-2012	2011/2 (1107) Udid. 11 - 22 - 241	
Nov-2012	2011/2 (HCP) data: H -> WW -> 2l2nu	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (HCP) data: H -> tau tau	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (HCP) data: H -> tau tau (MSSM)	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (HCP) data: VH -> V tau tau	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (HCP) data : VH -> V bb	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (HCP) data: H -> WW -> Inujj	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (ICHEP) data : WH -> 3l3nu	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (HCP) data: Combination	<u>TWiki</u> , <u>PAS</u>
Nov-2012	2011/2 (ICHEP) data: bbH->bbbb (MSSM) sl+h	<u>TWiki</u> , <u>PAS</u>
May-2012	2011 data : phi -> mu mu	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data: H -> gamma gamma	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data: H -> ZZ -> 4I	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data : H -> WW -> 2l2nu	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data : H -> WW -> 2l2nu, shape	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data : H -> tau tau	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data : VH -> V bb	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data : H -> ZZ -> 2l2nu	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data : H -> WW -> Inujj	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011 data : ttH -> tt bb	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data: Observation: ~125 GeV	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011/2 data: H -> gamma gamma, FP	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011 data: bbH all hadronic	<u>TWiki</u> , <u>PAS</u>
Jul-2012	2011 data: bbH semileptonic	<u>TWiki</u> , <u>PAS</u>

Plus "Moriond-Publications" 2013

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

http://cms.web.cern.ch/org/cms-higgs-results

Thomas Müller, Institut für Experimentelle Kernphysik

A. Introduction

Thomas Müller, Institut für Experimentelle Kernphysik

The Discovery July 4, 2012

Significant excess of events in both ATLAS and CMS in $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ (the most significant channels)

> Is it "Higgs" ? Is it "The Higgs"?

Phys. Lett. B 716 (2012)

Higgs Boson Production

Gluon fusion Selection of Higgs at large p_T enhances S/B

Vector boson fusion (VBF) Two forward jets with large |y|

Associated production Selection of Higgs at large $\ensuremath{p_{\text{T}}}$ enhances S/B

ttH production Dominant diagram t-t fusion

Note: EWK corrections are ~5%

2 - 4%

10%

3 - 4%

9%

45%

15 - 20%

Thomas Müller, Institut für Experimentelle Kernphysik

ΖH

ttH

5%

?

Higgs Boson decay into:

- **Bosons** → first observations
- γγ: Excellent mass resolution
- $ZZ^* \rightarrow 4I$: Low background
- WW* → 2I2v: High statistics, poor mass resolution

Fermions of the third generation:

- bb: Only in associated production
- $\tau\tau$: Leptonic and hadronic decay

Fermions of the second generation:

• cc, μμ: very hard but necessary!

Parametric + theoretical uncertainty of BRs:					LHC Higgs	s XS WG 2011	
$M_{\rm H}[{\rm GeV}]$	$\rm H \rightarrow \ b\bar{b}$	$\tau^+\tau^-$	$c\overline{c}$	gg	$\gamma\gamma$	WW	ZZ
120	3%	6%	12%	10%	5%	5%	5%
150	4%	3%	10%	8%	2%	1%	1%

Data taken at the LHC

Expected number of H decays in data:

ATLAS and CMS each collected 5 fb⁻¹@ 7TeV and 20 fb⁻¹@ 8TeV

Results shown here based on 5 fb⁻¹ data at 7TeV and up to 20 fb⁻¹ of data at 8TeV

Taken with 50 ns bunch spacing and typically 20 interactions/bunch crossing

Max. instantaneous luminosity 7.5 10³³/cm²s

Until end 2012:

~ 2.5 10^{15} pp collisions (inel. + el.) ~ 10^{10} pp collisions recorded

25 ·10⁶ Z $\rightarrow \mu\mu$ decays produced

- ~ 1000 H $\rightarrow \gamma\gamma$
- $\sim 50 \text{ H} \rightarrow \text{ZZ} \rightarrow 4 \ell$
- ~ 5000 H \rightarrow WW $\rightarrow \ell \nu \ell \nu$

B. Signals: Bosonic Decay Channels

Thomas Müller, Institut für Experimentelle Kernphysik

1. $H \rightarrow \gamma \gamma$

- Clean final state with 2 isolated photons
- Narrow mass peak on continuum
- Background shape extracted from data
- Fits in subcategories with distinct resolution and S/B improves total sensitivity
 - •To fight pile-up:

ATLAS: Longitudinal segmentation of EM Cal. to determine photon polar angle →determines Vertex

CMS: algorithmus based on Σp_T^2 of tracks and $p_T^{\gamma\gamma}$ balance chooses right vertex in 80% of cases

<u> «Kit</u>

ATLAS: $\mu = 1.65 \pm 0.24(\text{stat.})^{+0.25}_{-0.18}(\text{sys.}) \text{ at } 7.4\sigma (\text{exp. } 4.1\sigma) \text{!}$ Mass 126.8 ± 0.2(stat.) ± 0.7(sys.) GeV CMS: $\mu = 1.56 \pm 0.43(\text{stat.}) \text{ at } 4.1\sigma$ Mass 125.1 ± 0.4(stat.) ± 0.6(sys.) GeV New results next week !

2. $H \rightarrow ZZ^* \rightarrow 4$ leptons

- High lepton reconstruction efficiencies for m(4I) > 100 GeV
- Standard reference candle: singleresonant Z→4I
- Used for Measurement of mass, spin&parity

Irreducible background

Reducible background

Irreducible background:

• ZZ continuum, $Z\gamma^*$ – use kinematics to separate signal

Reducible background:

 Z + jets, Zbb & tt – use lepton isolation and impact parameter to reject b ->IX decays

CMS:

Matrix Element Likelihood Analysis: uses kinematic variables, angles for signal to background discrimination (MELA)

ATLAS: Boosted Decision Trees MELA

$$1/K_{D} = 1 + \frac{P_{background}(m_{1}, m_{2}, \theta_{1}, \theta_{2}, \Psi, \Phi, \theta^{*})}{P_{signal}(m_{1}, m_{2}, \theta_{1}, \theta_{2}, \Psi, \Phi, \theta^{*})}$$

ATLAS-CONF-2013-013

ATLAS: $\mu = 1.7 \pm 0.5 \text{ at } 6.6\sigma \text{ (expected } 4.4\sigma\text{)}$ Mass 124.3 $^{+0.6}_{-0.5} \text{ (stat.)} \, ^{+0.5}_{-0.3} \text{ (syst.)} \text{ GeV}$ CMS: $\mu = 0.91^{+0.30}_{-0.24} \text{ at } 6.7\sigma$ Mass 125.8 $\pm 0.5 \text{ (stat.)} \pm 0.2 \text{ (sys.)} \text{ GeV}$

3. H \rightarrow WW \rightarrow 2l2 ν (6 channels)

Higgs boson signal:

- Two isolated opposite sign Leptons (e or $\mu)$ and MET
- Dilepton invariant mass and Δφ are small in standard Model

Exclusive analysis in bins of jet multiplicities:

0-jet: optimized for gluon-fusion, purest channels, least affected by top BG

1-jet: more affected by top BG

Event classes:

- ee, μμ
- **e**µ

Irreducible background:

 Standard model diboson decays to two leptons and MET

Reducible background:

- Z→II+(jets→fake MET)
- W→lv+(jets→fake lepton)
- tW and ttbar production

2D(MT,MII) analysis

 $m_T^2 = (E_T^{ll} + E_T)^2 - \left| \vec{p}_T^{ll} + \vec{p}_T^{miss} \right|^2$

Counting analysis

ATLAS-CONF-2012-158

 Signal strength:

 ATLAS:
 $\mu = 1.5 \pm 0.6$ at 2.6σ (1.9σ expected)

 CMS:
 $\mu = 0.76 \pm 0.21$ at 4.0σ (5.1σ expected)

C. Signals: Fermionic Decay Channels

Thomas Müller, Institut für Experimentelle Kernphysik

4. Higgs $\rightarrow \tau^+ \tau^-$

Event Categories

Strategy:

VBF Process

- Select isolated, well-identified leptons, τ_h
- Topological cuts (e.g. m_T in $I\tau_h$, $p_T(H)$ in $\tau_h\tau_h$) to suppress background

VH Process

- Categorize events based on number of jets, τp_T
- Template fit to $m_{_{\tau\tau}}$ shape

μμ

eμ

 $\tau_{h}\tau_{h}$

 $e\tau_h$

 $\mu \tau_{h}$

VH→ττ+I

Combined

Fitted signal strength per category

Signal strength: ATLAS: $\mu = 0.7 \pm 0.7$ CMS: $\mu = 1.1 \pm 0.4$ at 2.9 σ (2.6 σ expected)

Thomas Müller, Institut für Experimentelle Kernphysik

Event Categories

- H→bb has largest BR but very high background
- Search for associated production with W or Z $(W \rightarrow Iv, Z \rightarrow II, Z \rightarrow vv)$
- Final states with leptons, E_{T} miss and b-jets
- Main background: W/Z + jets, top

Normalized from control regions in data

- Analysis strategy: Divide in categories high and low p_T of boson
- Further discriminate from Bkd using multivariate techniques

CMS PAS HIG-12-044

 Signal strength:

 ATLAS:
 μ = -0.4 ± 1.0

 CMS:
 μ = 1.3 +0.7 - 0.6

C. PROPERTIES OF THE FOUND PARTICLE

Thomas Müller, Institut für Experimentelle Kernphysik

- The energy scale of leptons is measured using J/Ψ and Z
- Precision: 0.2% 0.5%
- The photon energy scale is derived from Z->ee, knowing the shower shapes in the Electromagnetic Calorimeter

Table 1: Numerator scaling factors for different production×decay channels. Four coupling constant modifiers can be identified: c_V , c_b , c_τ , c_t . Denominator scaling factor is common and proportional to Γ_{TOT}

	$gg \rightarrow H$	VBF	VH	ttH
${\rm H} \to \gamma \gamma$	$c_t^2 \cdot \alpha c_V + \beta c_t ^2$	$c_V^2 \cdot \alpha c_V + \beta c_t ^2$	$(c_V^2 \cdot \alpha c_V + \beta c_t ^2)$	$\left(c_t^2 \cdot \alpha c_V + \beta c_t ^2 \right)$
$H \rightarrow bb$	$(c_t^2 c_b^2)$	$\begin{pmatrix} c_V^2 \cdot c_b^2 \end{pmatrix}$	$c_V^2 \cdot c_b^2$	$c_t^2 \cdot c_b^2$
$H \rightarrow \tau \tau$	$c_t^2 \cdot c_\tau^2$	$c_V^2 \cdot c_\tau^2$	$c_V^2 \cdot c_{\tau}^2$	$(c_t^2 \cdot c_\tau^2)$
$H \rightarrow WW$	$c_t^2 \cdot c_V^2$	$c_V^2 \cdot c_V^2$	$c_V^2 \cdot c_V^2$	$(c_t^2 \cdot c_V^2)$
$H \rightarrow ZZ$	$c_t^2 \cdot c_V^2$	$(c_V^2 \cdot c_V^2)$	$(c_V^2 \cdot c_V^2)$	$(c_t^2 \cdot c_V^2)$

• gg \rightarrow H and H $\rightarrow \gamma\gamma$ only through SM particles

• Assume:

Data consistent with $\kappa_V = \kappa_F = 1$

μ = 1.43 ± 0.16 (stat) ± 0.14 (sys)

3. Spin of Higgs

Decay angle in the Higgs boson rest frame (Collins-Soper frame) Compare dN/d[cosθ*] for:

- spin-0+ hypothesis: flat before cuts
- spin-2+ hypothesis: ~ $1+6\cos 2\theta^* + \cos 4\theta^*$

Likelihood hypothesis test of spin 0 versus spin 2:

Data favour spin 0, exclude spin 2 at 93% Cl.

SKIT

Likelihood hypothesis test of spin-0 versus spin 2: Data favour spin 0, exclude spin 2 with 1.3σ (expected 1.9σ)

4. Spin-Parity

Angular distributions in $H \rightarrow ZZ^* \rightarrow 4I$ sensitive to J ^p

- Spin 0 ⇒ two S=1 particles ⇒ angular correlations.
- Positive parity ⇒ decay planes aligned.
- Negative parity ⇒ decay planes orthogonal

Angle between Z decay planes:

Choi, Miller, Mühlleitner, Zerwas '02

Thomas Müller, Institut für Experimentelle Kernphysik

		BDT analysis				
		tested J^P for		tested 0 ⁺ for		
		an assumed 0 ⁺		an assumed J^P	CL _S	
		expected	observed	observed*		
0-	p_0	0.0037	0.015	0.31	0.022	
1+	p_0	0.0016	0.001	0.55	0.002	
1-	p_0	0.0038	0.051	0.15	0.060	
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168	
2-	p_0	0.0053	0.25	0.034	0.258	

ATLAS

CMS

J^P	production	comment	expect (μ =1)	obs. 0+	obs. J^P	CL_s
0^{-}	$gg \to X$	pseudoscalar	2.6 σ (2.8 σ)	0.5σ	3.3 <i>o</i>	0.16%
0_h^+	$gg \to X$	higher dim operators	$1.7\sigma~(1.8\sigma)$	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \to X$	minimal couplings	$1.8\sigma (1.9\sigma)$	0.8σ	2.7σ	1.5%
$2^+_{mq\bar{q}}$	$q\bar{q} \to X$	minimal couplings	$1.7\sigma~(1.9\sigma)$	1.8σ	4.0σ	< 0.1%
1^{-1}	$q\bar{q} \to X$	exotic vector	2.8 σ (3.1σ)	1.4σ	${>}4.0\sigma$	< 0.1%
1^{+}	$q\bar{q} \to X$	exotic pseudovector	2.3σ (2.6 σ)	1.7σ	$>4.0\sigma$	<0.1%

D. Perspectives

Thomas Müller, Institut für Experimentelle Kernphysik

Good summary of studies:

Paolo Giacomelli (INFN Bologna), Bill Murray (STFC/RAL) Presented at Plenary ECFA meeting Friday, November 23rd, 2012

Thomas Müller, Institut für Experimentelle Kernphysik

With LHC 7-8 TeV data:

- First characterization of Higgs-like boson
- spin/parity at 3-4 sigma level
- combined signal strength, $\mu = \sigma / \sigma_{SM}$, with ~15% precision
- With LHC 13/14 TeV data until ~2022 (~300 fb⁻¹):
- measure Higgs boson properties
- individual couplings at 5-10% precision
- With HL-LHC 13/14 TeV data until ~2032 (~3000 fb⁻¹):
- measure couplings with ultimate precision
- Study WW scattering

- Need detectors and trigger with high performances from low to high energy scales
- 125 GeV Higgs-like measurements
- Multi-TeV new physics searches
- Phase 1 Upgrade: twice LHC design luminosity
- Event pileup reaches 50 collisions per beam crossing (@ 25 ns)
- Factor 5 increase of trigger rates relative to 2012 run
- Phase 2 Upgrade: 5x LHC design luminosity
- Event pileup reaches 125 collisions per beam crossing (@ 25 ns)
- Need solutions to cope with very high rates, radiation and pileup

 $H \rightarrow \mu \mu$ allows direct study of coupling to two different generations

SKIT

In no Higgs case: increasing of xsec at high VV is suppressed by

- PDF
- offshell bosons
- unpolarized bosons
- \rightarrow small difference between SM and violation of unitarity

 \rightarrow with proper cut (eg Δ njets) can be enhanced -> selection of the longitudinal W

Needs observation of Higgs pairs: Extemely difficult at LHC !

- Externely unicult at Ln
- But it is not enough
- Need to prove triple Higgs involved
- negative interference

 $bb\gamma\gamma$ allows 3σ HH observation

 – 2 experiments, more channels, may give 3σ coupling measurement

"I think we have it"

Rolf Heuer, at the end of the presentations on July 4th, 2012

- Analysis of 7 TeV and 8 TeV data soon complete interesting new results presented this week
- ATLAS and CMS have established the existence of the boson
- Measurements of mass, cross section times ranching ratios, with increasing precision
- First direct evidence for Youkawa couplings to fermions!
- Determination of spin-parity
- SM values are favored: it is quite likely THE SM HIGGS ! (We think)

Interesting outlook for 14 TeV run at high and at very high luminosities DPG

APPENDIX

Zerfälle in Fermionen, Z- und W-Paare: $\Gamma(H \rightarrow f\bar{f}) = N_C \frac{G_F}{4\sqrt{2}\pi} m_f^2(m_H) m_H$ $\Gamma(H \rightarrow ZZ) = \frac{G_F}{16\sqrt{2}\pi} m_H^3 (1 - 4x + 12x^2) \beta_Z, \quad x = M_Z^2/m_H^2$ $\Gamma(H \rightarrow WW) = 2 \frac{G_F}{16\sqrt{2}\pi} m_H^3 (1 - 4x + 12x^2) \beta_W, \quad x = M_W^2/m_H^2$ H = -4

Zerfall in Gluonen und Photonen

$$\begin{split} \Gamma(H \to gg) &= \frac{G_F \, \alpha_S^2(m_H^2)}{36\sqrt{2}\pi^3} \, m_H^3 \left[1 + \left(\frac{94}{4} - \frac{7N_f}{6} \right) \frac{\alpha_S}{\pi} \right] \\ \Gamma(H \to \gamma\gamma) &= \frac{G_F \, \alpha^2}{128\sqrt{2}\pi^3} \, m_H^3 \left[\frac{4}{3} N_C q_t^2 - 7 \right]^2 \end{split}$$

Einzige Unbekannte: Higgs-Masse

SKIT

Production modes

Detectable decay modes

$rac{\sigma_{ m ggH}}{\sigma_{ m ggH}^{ m SM}}$	=	$\left\{ egin{array}{l} \kappa_{ m g}^2(\kappa_{ m b},\kappa_{ m t},m_{ m H}) \ \kappa_{ m g}^2 \end{array} ight.$	$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}}$	=	κ_{W}^{2}
$rac{\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}^{\mathrm{SM}}}$	=	$\kappa^2_{\mathrm{VBF}}(\kappa_{\mathrm{W}},\kappa_{\mathrm{Z}},m_{\mathrm{H}})$	$\frac{\Gamma_{\rm ZZ^{(*)}}}{\Gamma^{\rm SM}_{\rm ZZ^{(*)}}}$	=	κ_Z^2
$rac{\sigma_{ m WH}}{\sigma_{ m WH}^{ m SM}}$	=	κ_W^2	$\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}}$	=	κ_b^2
$rac{\sigma_{ m ZH}}{\sigma_{ m ZH}^{ m SM}}$	=	κ_Z^2	$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma_{\tau^-\tau^+}^{SM}}$	=	κ_{τ}^2
$rac{\sigma_{ m t\overline{t}H}}{\sigma_{ m t\overline{t}H}^{ m SM}}$	=	κ_t^2	$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}}$	=	$\left\{ \begin{array}{l} \kappa_{\gamma}^2(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{\gamma}^2 \end{array} \right.$
			$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}}$	=	$\begin{cases} \kappa_{(Z\gamma)}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{(Z\gamma)}^{2} \end{cases}$

- Signal model is fully correlated analytic 8-d model {mzz, m1, m2, θ1, θ2, Φ, θ*, Φ1}
 - Model takes as inputs directly spin-0 couplings a1,a2,a3
 - N.B. production angles $\Theta *, \Phi_1$ are uncorrelated and flat

Figure 6: Expected distributions for $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV for $m_{4\ell} = 125$ GeV including backgrounds in the mass range 115 GeV $< m_{4\ell} < 130$ GeV comparing two pairs of spin/parity J^P states. Comparison of 0⁺ versus 0⁻ hypotheses: (a) Φ , (b) cos θ_1 , and (c) m_{34} , and comparison of 2⁺_m versus 2⁻ hypotheses: (d) cos θ^* , (e) Φ_1 , and (f) m_{34} .

Thomas Müller, Institut für Experimentelle Kernphysik

Thomas Müller, Institut für Experimentelle Kernphysik

