Entwicklung bildgebender hadronischer Kalorimeter für Particle-Flow-Algorithmen

oder: wie baue ich ein Kalorimeter, um damit möglichst wenig messen zu müssen

Katja Krüger (DESY) DPG Frühjahrstagung 2013 Dresden, 4.-8. März 2013

Physik am International Linear Collider

- > 4. Juli 2012: CMS und ATLAS entdecken ein neues Boson mit Masse m ≈ 125 GeV, das die Erwartungen an das SM-Higgs-Boson erfüllt
- > aber: ist es wirklich das SM-Higgs-Boson?
 ⇒ ist die Kopplung an andere

Teilchen proportional zu ihrer Masse?

ein e⁺e⁻ Collider kann die Präsision dieser Messung entscheidend verbessern und so zwischen dem SM und anderen Modellen unterscheiden

außerdem: Suche nach BSM Physik, Messungen von W und Z Bosonen, top-Physik (s. P. Bechtle, Fr. 11:40)

aus: ILC DBD

LHC: $3000 \text{ fb}^{-1} \text{ pp at } \sqrt{s} = 14 \text{ TeV}$ HLC: $+ 250 \text{ fb}^{-1} \text{ e}^+\text{e}^- \text{ at } \sqrt{s} = 250 \text{ GeV}$ ILC: $+ 500 \text{ fb}^{-1} \text{ e}^+\text{e}^- \text{ at } \sqrt{s} = 500 \text{ GeV}$ ILCTEV: $+ 1000 \text{ fb}^{-1} \text{ e}^+\text{e}^- \text{ at } \sqrt{s} = 1 \text{ TeV}$

Der International Linear Collider

- > e⁺e[−] Collider mit Schwerpunktsenergie bis zu \sqrt{s} = 500 GeV Möglichkeit eines Upgrades auf \sqrt{s} = 1 TeV
- > 31 km lang, supraleitende Beschleunigungsstrecken

> alternatives Konzept: CLIC, neuartige Technologie, bis zu \sqrt{s} = 3 TeV

Detektoren für den ILC

> 2 Konzepte für Detektoren am ILC: ILD und SiD

International Large Detector

Silicon Detector

Rekonstruktion von Jets

aus: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- > Ziel: Unterscheidung der Zerfälle Z → jet jet und W → jet jet anhand der rekonstruierten Masse
- > dafür benötigte Auflösung: σ(E_{jet})/E_{jet} ≈ 3-4% für E_{jet} ≈ 40 bis 500 GeV
- > "typisches" Kalorimeter allein: $\sigma(E_{jet})/E_{jet} \approx 60\%/\sqrt{E(GeV)} \oplus 2\%$ $\Rightarrow \sigma(E_{jet})/E_{jet} \approx 10\%$ bei $E_{jet} = 50$ GeV
- vielversprechender Lösungsweg:
 Particle
 Flow
 Algorithmen

Particle Flow Algorithmus

> Idee:

benutze für jedes Teilchen im Jet den Detektorteil, der die beste Energieauflösung hat

aus: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- > "typischer" Jet:
 - ~ 62% geladene Teilchen
 - ~ 27% Photonen
 - ~ 10% neutrale Hadronen
 - ~ 1% Neutrinos

Particle Flow Algorithmus

> Idee:

benutze für jedes Teilchen im Jet den Detektorteil, der die beste Energieauflösung hat

aus: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- > "typischer" Jet:
 - ~ 62% geladene Teilchen
 - ~ 27% Photonen
 - ~ 10% neutrale Hadronen

1% Neutrinos

Spurkammer EM Kalorimeter HAD Kalorimeter

Particle Flow Algorithmus

> Idee:

benutze für jedes Teilchen im Jet den Detektorteil, der die beste Energieauflösung hat

aus: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typischer" Jet:
 - ~ 62% geladene Teilchen
 - ~ 27% Photonen
 - ~ 10% neutrale Hadronen

1% Neutrinos

Spurkammer EM Kalorimeter HAD Kalorimeter $(\sigma_{jet})^{2}$ $\approx 0.62 (\sigma_{tracks})^{2}$ $+ 0.27 (\sigma_{ECAL})^{2}$ $+ 0.10 (\sigma_{HCAL})^{2}$ $+ (\sigma_{loss})^{2} + (\sigma_{confusion})^{2}$

Jetenergie-Auflösung

- > PFA ist Kalorimeter allein deutlich überlegen
- korrekte Zuordnung zwischen Spuren und Kalorimeter sehr wichtig! ⇒ "bildgebendes" Kalorimeter

DES

Generelle Überlegungen

Sandwich-Kalorimeter

- Absorber: möglichst dichtes Material, kleine
 Strahlungslänge X₀ bzw. Wechselwirkungslänge λ₁
- aktive Lagen: "zählen" die Teilchen im Schauer

> ECAL:

- relativ klein, daher teurere Materialien möglich
- Absorber: Wolfram
- verschiedene Konzepte f
 ür die aktiven Lagen

> HCAL:

- relativ großes Volumen, aber Kosten f
 ür den gesamten Detektor beinhalten auch den Magneten:
 - kompaktes Kalorimeter (teureres Material)
 → kleinerer (billigerer) Magnet
 - größeres Kalorimeter (billigeres Material)
 → größerer (teurerer) Magnet
 - Basis: Stahl als Absorber, Wolfram als mögliche Alternative
- verschiedene Konzepte f
 ür die aktiven Lagen

Elektromagnetisches Kalorimeter: aktives Material

Silizium

1024 pixel

SiD

ILD

Szintillator

ILD Alternative

Hadronisches Kalorimeter: Konzepte

> Digitales HCAL: zähle Anzahl von getroffenen Pixeln (aus/an)

Hadronisches Kalorimeter: Konzepte

- > Digitales HCAL: zähle Anzahl von getroffenen Pixeln (aus/an)
- Semi-Digitales HCAL: zusätzliche Information über Menge der Teilchen in einem Pixel durch 3 Schwellen (aus/normal/groß/sehr groß)
- > Analoges HCAL: summiere Signale in größeren Zellen

alle 3 Konzepte werden verfolgt und haben die prinzipielle Realisierbarkeit in "Physik-Prototypen" gezeigt

Digitales HCAL

- Resistive Plate Chamber: lokale Gasverstärkung zwischen 2 Glasplatten unter Hochspannung
- > 1*1 cm² Auslese-Pads
- > Auslese: 1 bit (digital)
- > SiD Basisdesign

Semi-Digitales HCAL

- Resistive Plate Chamber: lokale Gasverstärkung zwischen 2 Glasplatten unter Hochspannung
- > 1*1 cm² Auslese-Pads
- > Auslese: 2 bit (semi-digital)
- SiD / ILD Alternative

Analoges HCAL

- Szintillator-Kacheln mit Wellenlängenschiebern, von SiPMs ausgelesen
- > 3*3 cm² 12*12 cm² Kacheln
- > Auslese: 12 bit (analog)
- ILD Basisdesign

- Teststrahlen liefern nur einzelne Teilchen, keine Jets → keine direkte Überprüfung der Energieauflösung für Jets möglich
- trotzdem liefern Messungen mit Teststrahlen wichtige Informationen:
 - praktische Erfahrung mit einem (kleinen) Detektor
 - Kalibration des Detektors
 - Energieauflösung für einzelne Hadronen ist eine Komponente der Jet-Energieauflösung
 - Vergleich von Hadronschauern in Daten und Simulation (Geant4)
 - ⇒ Untersuchungen der Schauer-Substruktur
 - ⇒ Tests des Particle-Flow-Algorithmus mit überlagerten Ereignissen
 - ⇒ realistische Jet-Energieauflösung in der Simulation

Energieauflösung für einzelne Hadronen

Messung der Energieauflösung für geladene Pionen bei unterschiedlichen Strahlenergien mit dem AHCAL Physikprototypen

- Software-Kompensation (SC):
 - nicht-kompensierende Kalorimeter reagieren unterschiedlich auf elektromagnetische und hadronische Schauer
 - hadronische Schauer haben elektromagnetische Subschauer
 - verwende unterschiedliche Gewichte in der Rekonstruktion für elektromagnetischen und hadronische Subschauer
- > 45%/√E für den stochastischen Term erreichbar, konstanter Term 1.8%

Vergleich von Hadronschauern in Daten und Simulation

- Vergleich der longitudinalen
 Schauerentwicklung f
 ür 18 GeV π⁻
- > unterschiedliche Modelle, z.B.:
 - LHEP: Parametrisierung alter Messungen
 - QGSP_BERT: Kombination von Physik-motivierten Modellen
- > gute Beschreibung durch aktuelle Modelle

AHCAL: Vom Physics zum Engineering Prototyp

Ziel: Entwicklung eines Prototyps, der so als Teil des Kalorimeters eines ILC-Detektors gebaut werden könnte ("engineering prototype")

- > Geometrie: oktagonale Form, 2 Ringe entlang der Strahlachse
- > Barrel + Endcaps: 8 Millionen Auslesekanäle
- > möglichst kompakt, wenige Detektorbereiche ohne aktive Lagen:
 - in die Lagen integrierte Elektronik
 - keine aktive Kühlung

AHCAL: Auf dem Weg zum Engineering Prototyp

- > 3*3*0.3 cm³ Szintillator-Kacheln mit Wellenlängenschieber, ausgelesen mit SiPMs
- HCAL Base Unit: Basis-Einheit, 36*36 cm², 144 Kacheln, 4 Auslese-Chips
- Central Interface Board: Spannungsversorgung, Auslese und Kalibration für eine Lage (bis zu 18 HBUs)

AHCAL: Optimierung des Energieverbrauchs

- Ziel: Bau eines Kalorimeters ohne aktive Kühlung
- > Wärme der im Detektor integrierten Elektronik kann nicht einfach abgeführt werden
- > energiesparende Elektronik: maximaler Verbrauch 40 µW/Kanal
 - Berücksichtigung beim Design der Auslese-Elektronik, z.B. bei den im HBU integrierten Auslese-Chips
 - Ausnutzen der geplanten Zeitstruktur der Strahlen beim ILC ("power pulsing")

AHCAL: 4 HBU Lage

- > gegenwärtige Konfiguration des Engineering Prototyps
- kleinste Konfiguration, um Zusammenspiel von mehreren HBUs hinter- und nebeneinander in einer Lage zu testen
- > 576 Auslesekanäle: erste Schritte zu automatisierten Prozeduren notwendig
- Messungen im Elektronen-Strahl am DESY und Pionen-Strahl am CERN
 - praktische Erfahrung sammeln
 - Untersuchung der zeitlichen
 Entwicklung von
 Hadronschauern

AHCAL: Zeit-Messung

- Messprinzip: Time-to-Digital Converter
- Zeitpunkt der Energiedeposition kann bei der Zuordnung zu Spuren helfen und Untergrund unterdrücken
- ➤ Hadronschauer werden durch verschiedene Prozesse hervorgerufen (EM Komponente, Streuung an und in Kernen, Anregungen von Kernen), die unterschiedlich schnell ablaufen ⇒ Zeitmessung bringt Erkenntnisse zur Schauerzusammensetzung

Zusammenfassung und Ausblick

- > Detektoren für den ILC erfordern spannende neue Konzepte
 - Optimierung f
 ür Particle Flow Algorithmen
- bildgebende Kalorimeter
 - essentiell f
 ür exzellente Jet-Energie-Messung
 - zuvor unerreichte Granularität
 - Prototypen erlauben schon jetzt detailliertere Untersuchungen hadronischer Schauer
 - technologische Herausforderung u.a. durch die riesige Anzahl Auslesekanäle
- > nächste Schritte für das AHCAL:
 - 2013: mehrlagiger Prototyp
 - 201?: 1m³ Engineering Prototyp
 - 20??: ILC und ILD

Am AHCAL beteiligte Institute

The AHCAL in CALICE

- DESY: steel structures, electronics and integration, test beam support, software, project management
- Hamburg: SiPMs and tile optimisation, test beam and commissioning w/ DESY
- Heidelberg: high gain ASICs, SiPM mass tests and characterisation
- MPI Munich: SiPM development, tile optimisation, cassettes, tungsten timing
- Wuppertal: embedded LED electronics and test stands
- Mainz: DAQ central components and AHCAL data concentrator
- Omega@LLR: SPIROC ASICs
- CERN: tungsten absorber, testbeam and Geant4 support
- ITEP: tiles and SiPMs, test bench characterisation
- Dubna: power supplies and distribution
- Prague: fibre based LED system
- NIU: alternative SiPM coupling, DAQ interface
- Bergen: calibration studies
- Matsumoto, Japan: scintillator strip alternative, photosensors

Backup

Energieauflösung für einzelne Hadronen

Software Compensation verbessert stochastischen Term: $58\%/\sqrt{E} \rightarrow 45\%/\sqrt{E}$

Messung mit 1 or 3 Schwellen

3 Schwellen verbessern Auflösung bei großen Energien

Nicht-Linearität korrigiert

mit und ohne Schnitt auf Containment

Stochastischer Term: 55%/√E

Nicht-Linearität nicht korrigiert

- > in Pixel unterteilt
- > im Geiger-Modus betriebene Avalanche-Photodioden
- kann einzelne Photonen nachweisen
- > Verstärkung ca. 10⁶
- kann in Magnetfeldern betrieben werden

