Dresden, 5/3/2013

Exploring new physics with solar vs

Antonio Palazzo MPI für Physik (München)

Outline

1) θ_{13} is non-zero Solar vs as harbingers of the discovery

2) Intermezzo Why so much attention on one angle?

3) Beyond three neutrino families Solar vs as a probe of new sterile states

Introduction

The 3v mass-mixing properties

The PMNS mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}$$

$$\Gamma_{\delta} = \text{diag}(1, 1, e^{+i\delta})$$

 $\delta \in [0, 2\pi]$
Dirac CP-violating phase δ
U is non-real if $\delta \neq (0, \pi)$

Explicit form:
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{23}^2 \sim 0.39$$
 $s_{13}^2 \sim 0.024$ $s_{12}^2 \sim 0.31$ $\theta_{23} \sim 39^\circ$ $\theta_{13} \sim 9^\circ$ $\theta_{12} \sim 34^\circ$

The neutrino mass spectrum

$\boldsymbol{\theta}_{13}$ is non-zero and relatively large

Solar vs as harbingers of the discovery

2008: First indication of θ_{13} >0

The global analysis provided a preference for θ_{13} > 0 at 90% C.L.

Fogli, Lisi, Marrone, A.P., Rotunno, PRL 101, 141801 (2008)

Indication came from two independent hints

Fogli, Lisi, Marrone, A.P., Rotunno, Phys. Rev. Lett. 101, 141201 (2008)

 $\sin^2\theta_{13} \sim 0.016$

Role of solar and KamLAND crucial

Solar vs are thus a very precise machine and we can trust them also when searching for non-standard physics

Indication irrefutably confirmed in 2012

(θ_{13} non-zero at the ten sigma level, $\theta_{13} \sim 9^{\circ}$)

Accelerator experiments

(weighted)

Reactor experiments

Intermezzo

Why so much attention on one angle?

θ_{13} >0: precondition for leptonic CPV

The Jarlskog invariant J gives a parameterization-independent measure of the CP violation induced by the non-reality of U

$$J = \Im[U_{\mu3}U_{e2}U_{\mu2}^*U_{e3}^*]$$

In the standard parameterization the expression of J is:

$$J = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$$

Only if all three $\theta_{ij} \neq 0$ the CP symmetry can be violated quark-sector: $J_{CKM} \sim 3 \times 10^{-5}$, much smaller than $|J|_{max} = \frac{1}{6\sqrt{3}} \sim 0.1$ lepton-sector: |J| may be as large as 3×10^{-2} : it will depend on δ ...

... first information about $\boldsymbol{\delta}$

Hint of $\delta \sim \pi$

Indication of non-maximal θ_{23} $(\theta_{23} < \pi/4)$

No sensitivity to mass hierarchy

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012)

Where the hint of $\delta \sim \pi$ come from?

LBL are almost insensitive to δ

Weak sensitivity emerges once reactors fix θ_{13}

Atm. enhance sensitivity

Global hint of $\delta \sim \pi$ emerges

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012)

If $\delta \sim \pi$ confirmed it would indicate U ~ real and a small J ... and a long and difficult way towards CPV observation!

θ₁₃>0: opportunity to determine vMH PINGU @ IceCube is a promising option

For θ_{13} >0 one expects an interference between the MSW matter potential felt by atm. vs traversing the earth and $\pm \Delta m^2$

Signature in the energy/zenith-angle dist.

Akhmedov et al 1205.7071 hep-ph

However, degeneracies exist due to uncertainties on mass-mixing parameters, which can partly mimic the signature

Several sensitivity studies under way both by the IceCube collab. and other groups

Precise knowledge of θ_{13} important for θ_{23}

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012)

LBL introduce:

- θ_{23} - θ_{13} anticorrelation
- prefer. non-maximal θ_{23}
- weak octant asymmetry

Once reactors fix θ_{13} the octant asymmetry is enhanced

Atm. further enhance octant asymmetry

Global indication of $\theta_{23} < \pi/4$ emerges

due to synergy of reactor, accelerator and atmospheric data

Beyond three neutrino families?

Exploring new neutrino properties

Why go beyond the standard 3v picture?

Theory

Many extensions of the SM point towards new v properties (interactions, new states,...)

Acquired knowledge

Precision on standard parameters enhances the sensitivity to any kind of perturbation

Experimental hints

Although the 3v scheme explains most of the data an increasing number of anomalies are showing up

New data expected

A rich plan of new experiments will allow us to explore and chart new territories

Why introduce new light v species?

A few anomalies seem to point towards sterile neutrino species v_s 's [singlets of U(1)xSU(2)]

(I) Accumulating hints of eV $\nu_{\rm s}{\rm 's}$ from oscillation phenomenology and cosmology

(II) Indications of "warm" dark matter from astrophysical "small-scale" problems (keV v_s's are a good option)

I will discuss only eV v_s 's

The success of the 3v scheme must be preserved

Leading effects are expected in short-baseline (SBL) reactor and accelerator experiments and in cosmology

Subleading effects expected in "ordinary" data (solar, atm., LBL-react, LBL-accel.) used in the 3v fits

I) The reactor and gallium anomalies (SBL $v_e \rightarrow v_e$ disappearance)

Mention et al. arXiv:1101:2755 [hep-ex]

SAGE coll., PRC 73 (2006) 045805

In a 2v framework:

$$P_{ee} \simeq 1 - \sin^2 2\theta_{new} \sin^2 \frac{\Delta m_{new}^2 L}{4E}$$

In a 3+1 scheme:

$$P_{ee} = 1 - 4 \sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E}$$
$$\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2$$

$$\sin^2 \theta_{new} \simeq U_{e4}^2 = \sin^2 \theta_{14}$$

Warning: both are mere total rate issues The culprit may be hidden in systematics

Fitting them to sterile v oscillations

22

II) The accelerator anomaly (SBL $v_{\mu} \rightarrow v_{e}$ appearance)

Giunti and Laveder, arXiv:1107.1452

In tension with disappearance searches: $v_{\mu} - v_{e}$ positive appearance signal incompatible with joint $v_{e} - v_{e}$ (positive) & $v_{\mu} - v_{\mu}$ (negative) searches Warning: $\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \simeq 4|U_{e4}|^2|U_{\mu4}|^2$ Theory: Experiments: ~ few ‰ ~ 0.1 < few %

III) The "dark radiation" anomaly

CMB + LSS tend to prefer extra relativistic content ~ 2 sigma effect

[Hamann et al., PRL 105, 181301 (2010)]

Warnings:

- eV masses acceptable only abandoning standard ΛCDM
- N_s>1 at BBN strongly disfavored (Mangano & Serpico PLB 701, 296, 2011)
- N_s is not specific of sterile neutrinos

What the solar v data can tell us?

Solar vs are sensitive to v_s oscillations

$$\theta_{13} \neq 0 \quad \theta_{14} = 0 \quad (3v)$$

$$\begin{cases} P_{ee} = c_{13}^4 P_{ee}^{2\nu} \Big|_{V \to V c_{13}^2} + s_{13}^4 \\ P_{es} = 0 \end{cases}$$

$$\theta_{13} = 0 \quad \theta_{14} \neq 0 \quad (4v)$$

$$\begin{cases} P_{ee} = c_{14}^4 P_{ee}^{2\nu} \\ V \to V c_{14}^2 \end{cases} + s_{14}^4 \\ P_{es} \simeq s_{14}^2 P_{ee}^{2\nu} \\ V \to V c_{14}^2 \end{cases} + s_{14}^2 \end{cases}$$

... and constrain the electron neutrino mixing

Complete degeneracy U_{e3}-U_{e4} indistinguishable

Robust upper bound on the combination $\sim |U_{e3}|^2 + |U_{e4}|^2$

Different probes are necessary to determine if v_e mixes with v_3 or v_4

A.P. PRD 83 113013 (2011) [arXiv: 1105.1705 hep-ph]

Interplay of solar and reactor experiments

A.P., Invited Review for Mod. Phys. Lett. A 28, 1330004 (2013)

- Bound is not incompatible with the SBL reactor anomaly
- It makes sense to perform a combination, which reduces the indication for sterile neutrinos to the ~2.5 σ level $_{\rm co}$

Summary

- Solar vs harbingers of the discovery of θ_{13} >0
- This discovery opens the way to CPV and νMH
- First information on CPV phase ($\delta \sim \pi$) & $\theta_{23} < \pi/4$
- A few anomalies suggest new light sterile νs
- The phenomenological picture is rather confused
- New experiments indispensable to settle the issue

Conclusion

A unique moment for neutrino physics!

This is the right time to strengthen our effort to:

- 1) Complete the understanding of the standard 3v framework
- 2) Explore and hopefully discover new v properties

It is our task to exploit the propitious moment (kairos)! Kairos (καιρός)

Thank you for your attention!