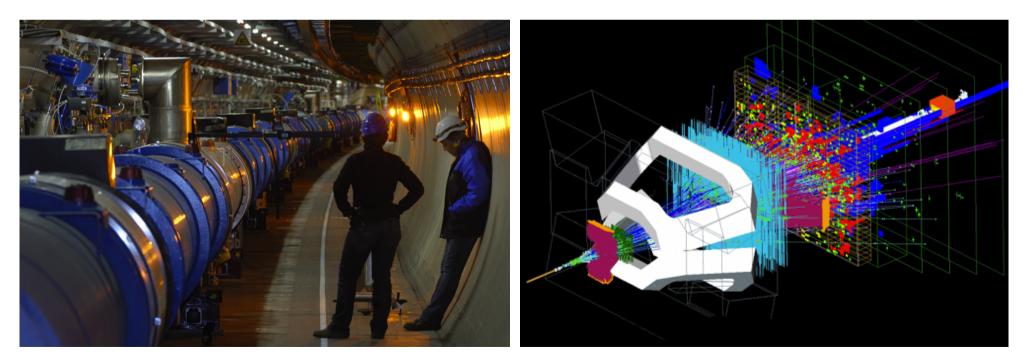

Messung von γ in Tree-Zerfällen bei LHCb

Till Moritz Karbach CERN

moritz.karbach @ cern.ch

DPG, Dresden, March 2013

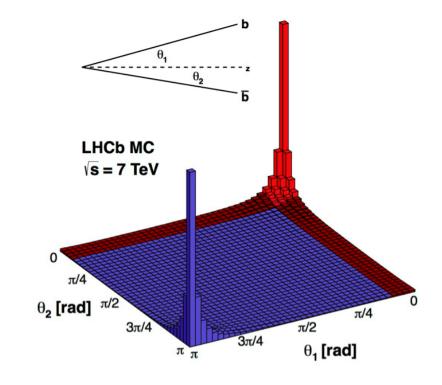


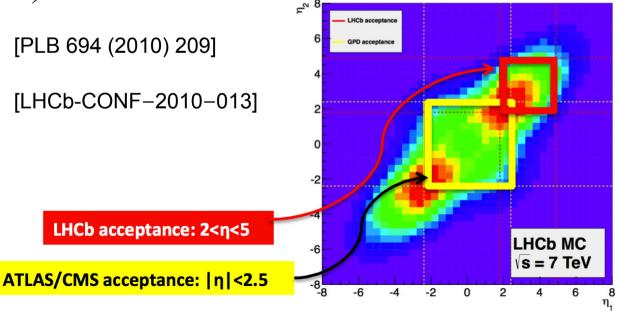
Plan

- Part I: introduction
- Part II: time *integrated* γ measurements
- Part III: combination of time int. meas.
- Part IV: time *dependent* γ measurement

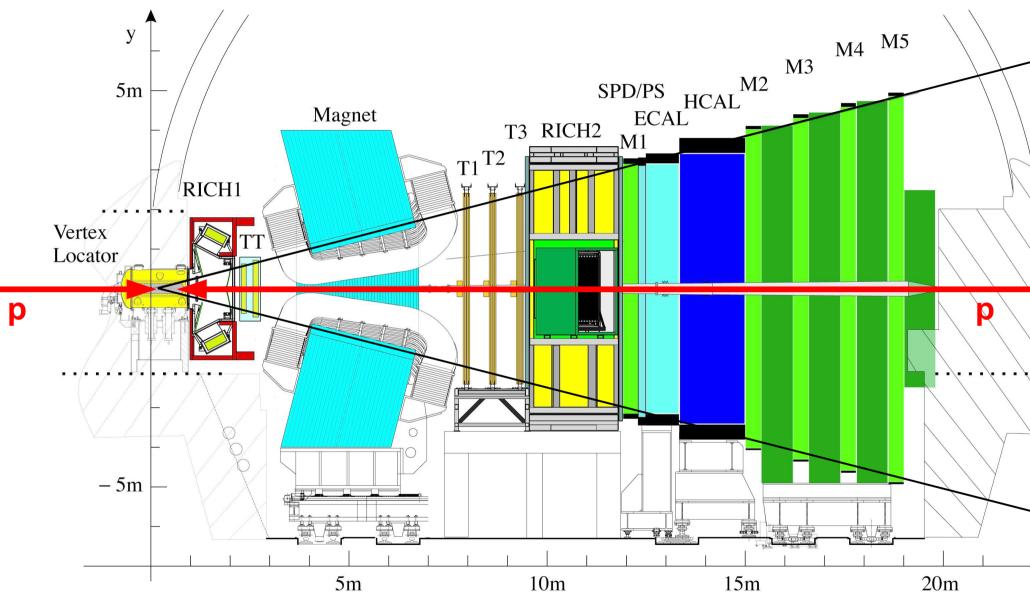
LHCb

- LHCb is a forward spectrometer at LHC.
- Operating in collider mode.
- It is dedicated to precision measurements of b and c physics a general purpose spectrometer in the forward region!
- CP violation, rare decays




LHCb

- one arm forward spectrometer
- b pair production angles strongly correlated
- covers $1.9 < \eta < 4.9$
- 100'000 bb pairs produced per second (10⁴ x B factories)


 $\sigma(b\overline{b}) = 284 \pm 53 \mu \mathrm{b}$ [PLB 694 (2010) 209] $\sigma(c\overline{c}) \approx 20 \times \sigma(b\overline{b})$ [LHCb-CONF-2010-013]

• particle identification by two RICH detectors

LHCb

CKM matrix

Cabibbo Kobayashi Maskawa

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
flavor
eigenstates
eigenstates
eigenstates
anti-quark decay
$$q = V_{qp}$$

$$W^+$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & \lambda^3 A(\rho - i\eta)\\ -\lambda & 1 - \frac{\lambda^2}{2} & \lambda^2 A & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$W^-$$
unitarity condition:
$$V^{\dagger}V = 1$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$(0, 0)$$

$$Y = \arg\left(-\frac{V_{ud}V_{ub}}{V_{cd}V_{cb}}\right)$$

$$(0, 0)$$

$$R = \left(1, 0\right)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

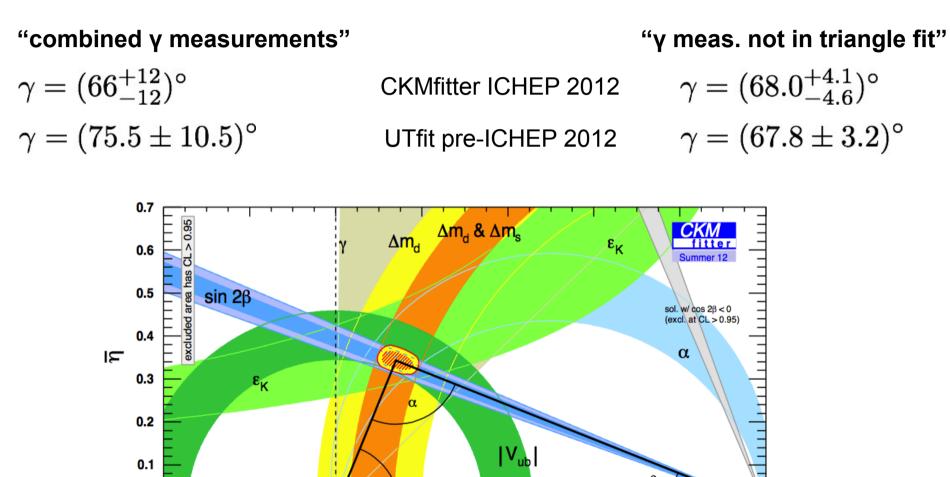
$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$

$$(1, 0)$$


$$(1,$$

DPG Dresden 05.03.2013

 γ at LHCb

angle γ

 γ is the least well known angle of the unitarity triangle.

0.0

-0.4

-0.2

0.0

γ at LHCb

ρ

0.4

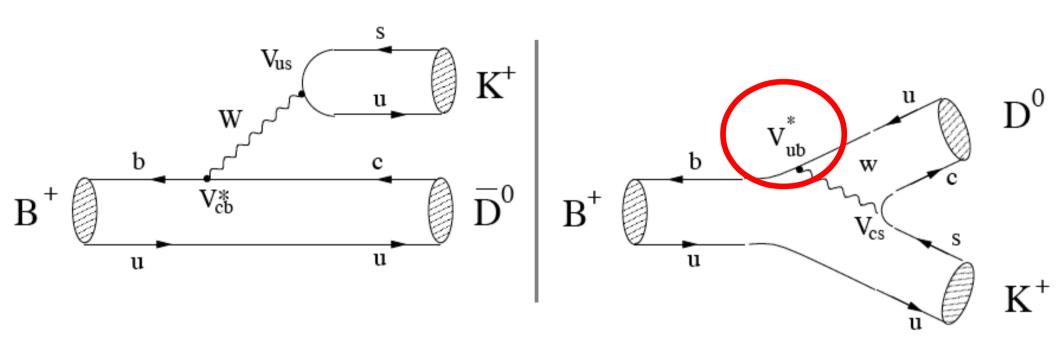
0.6

0.8

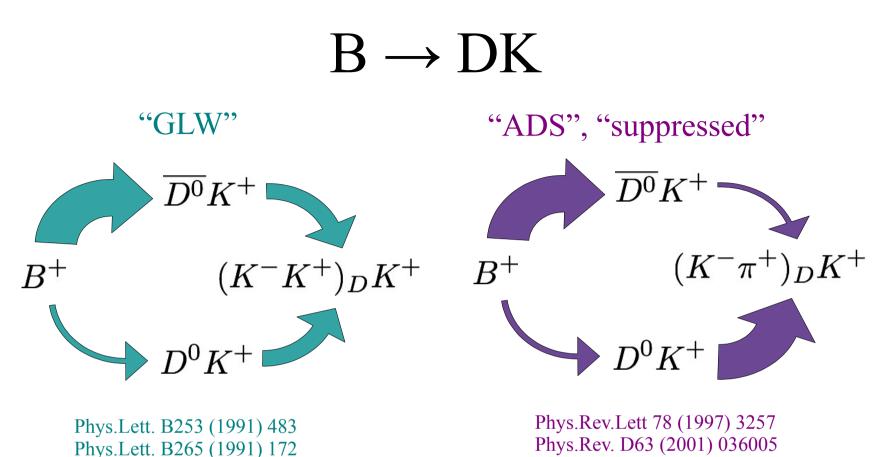
1.0

0.2

angle γ


• Difficult to measure, as the decay rates are small. $BR(B^- \to DK^-, D \to \pi K) \approx 2 \times 10^{-7}$ LHCb first observation with ~100 events

- γ can be determined entirely from tree decays.
 - this is a unique property among all CP violation parameters
 - negligible theoretical uncertainty (J. Zupan): $\delta\gamma/\gamma = \mathcal{O}(10^{-6})$
 - hadronic parameters can all be determined from the data
 - provides an important Standard Model set point ("standard candle")
- γ can probe for new physics at extremely high energy scales (J. Zupan)
 - (N)MFV new physics scenarios: $\sim O(10^2 \text{ TeV})$
 - gen. FV new physics senarios: $\sim O(10^3 \text{ TeV})$


Part II:

time integrated measurements

$B \rightarrow DK$

- This was, and still is, the most important channel to measure γ .
- We need to reconstruct the D/\overline{D} meson in a final state accessible to both to achieve interference.
- Also possible: $B \rightarrow D\pi$! But little sensitivity.
- Choice of final state labels the "method": GLW, ADS, GGSZ

Gronau, London, Wyler

Atwood, Dunietz, Soni

"GGSZ", "Dalitz"

- Use 3-body self-conjugate modes such as $D \to K_s \pi^+ \pi^-$
- hadronic D parameters vary across Dalitz plot

Giri, Grossman, Soffer, Zupan, hep-ph/0303187

DPG Dresden 05.03.2013

$B \rightarrow Dh$: Observables

- Define observables as **yield ratios** (many systematics cancel).
- Charge **asymmetries**:

$$A_{h}^{f} = \frac{\Gamma(B^{-} \to [f]_{D}h^{-}) - \Gamma(B^{+} \to [f]_{D}h^{+})}{\Gamma(B^{-} \to [f]_{D}h^{-}) + \Gamma(B^{+} \to [f]_{D}h^{+})}$$

• **Kaon/pion** ratio:

$$R^f_{K/\pi} = \frac{\Gamma(B^{\pm} \to [f]_D K^{\pm})}{\Gamma(B^{\pm} \to [f]_D \pi^{\pm})}$$

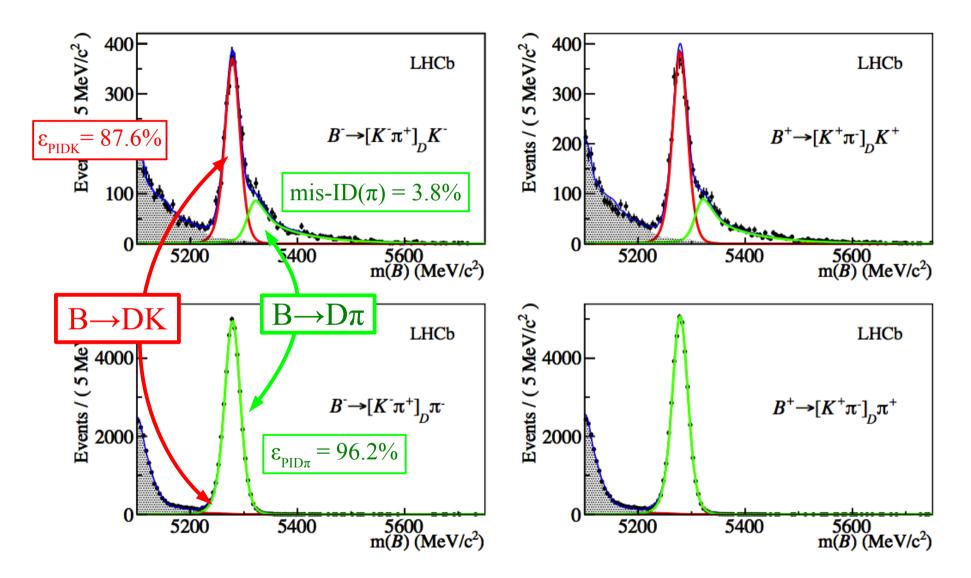
Form a system of equations. Need more observables than parameters!

 \rightarrow many different D decays

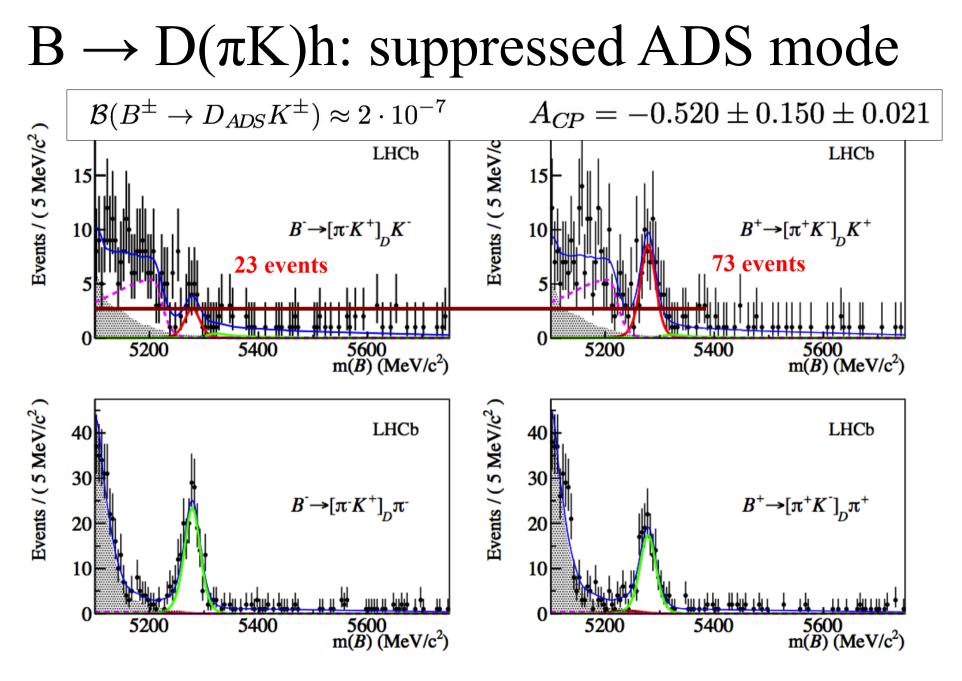
• **Suppressed/favored** decay ratio (2-body example):

$$R_{h}^{\pm} = \frac{\Gamma(B^{\pm} \to [\pi^{\pm}K^{\mp}]_{D}h^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm}\pi^{\mp}]_{D}h^{\pm})}$$
$$= r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\pm\gamma + \delta_{B} + \delta_{D})$$
strong phase diff.

DPG Dresden 05.03.2013


$B \rightarrow Dh$: Observables

- Reconstructing neutral particles is difficult, so we miss the GLW CP- states.
- We also suffer in $D \to K_s \pi \pi$.
- At LHCb, we chose a more **"factory like" approach**.
- We use **all** reasonable ratios, including the asymmetry of the ADS favored modes.


1		
	$R^{K\pi}_{K/\pi} =$	$0.0774 \pm 0.0012 \pm 0.0018$
	$R^{KK}_{K/\pi} =$	$0.0773 \pm 0.0030 \pm 0.0018$
	$R^{\pi\pi}_{K/\pi} =$	$0.0803 \pm 0.0056 \pm 0.0017$
	$A^{K\pi}_{\pi} =$	$-0.0001 \pm 0.0036 \pm 0.0095$
	$A_K^{K\pi} =$	$0.0044 \pm 0.0144 \pm 0.0174$
	$A_K^{KK} =$	$0.148 \pm 0.037 \pm 0.010$
	$A_K^{\pi\pi} =$	$0.135 \pm 0.066 \pm 0.010$
	$A_{\pi}^{KK} =$	$-0.020 \pm 0.009 \pm 0.012$
	$A^{\pi\pi}_{\pi} =$	$-0.001 \pm 0.017 \pm 0.010$
	$R_K^- =$	$0.0073 \pm 0.0023 \pm 0.0004$
	$R_K^+ =$	$0.0232 \pm 0.0034 \pm 0.0007$
	$R_{\pi}^{-} =$	$0.00469 \pm 0.00038 \pm 0.00008$
	$R_{\pi}^{+} =$	$0.00352 \pm 0.00033 \pm 0.00007$.

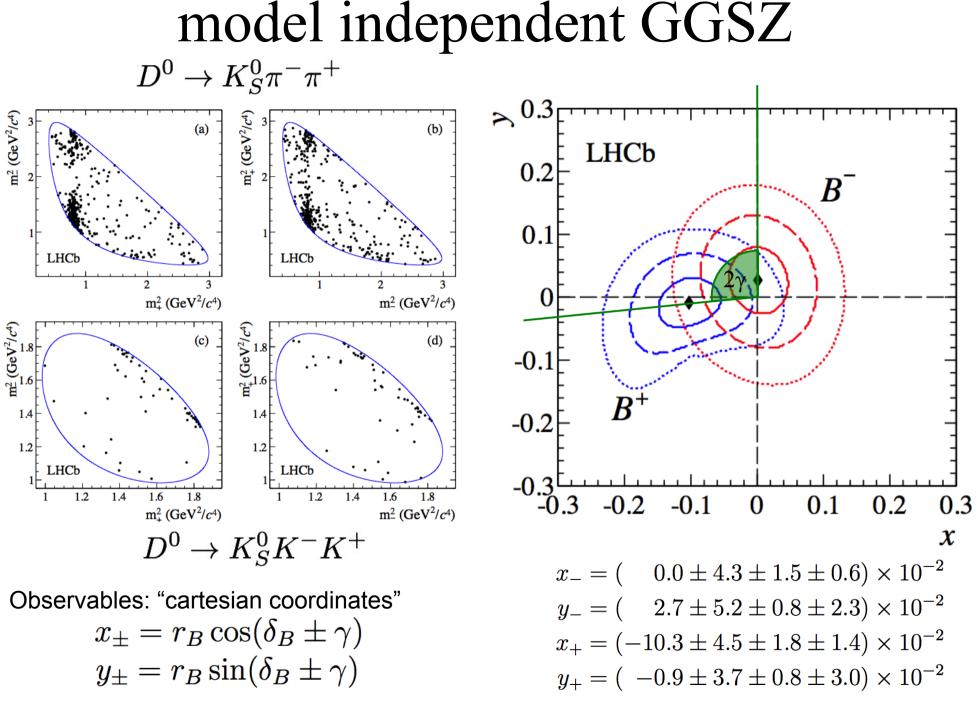
13 observables, all part of same analysis! final states $[f]_D$: KK, $\pi\pi$ K π , π K

$B \rightarrow D(K\pi)h$: favored ADS mode

ARXIV:1203.3662

ARXIV:1203.3662

LHCb-CONF-2012-030


four-body ADS

B
ightarrow Dh followed by $D
ightarrow K\pi\pi\pi$

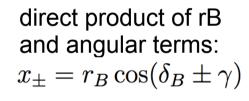
First observations of these decay modes!

 $A_{CP} = -0.42 \pm 0.22$

DPG Dresden 05.03.2013

Part III:

gamma combination


Combination

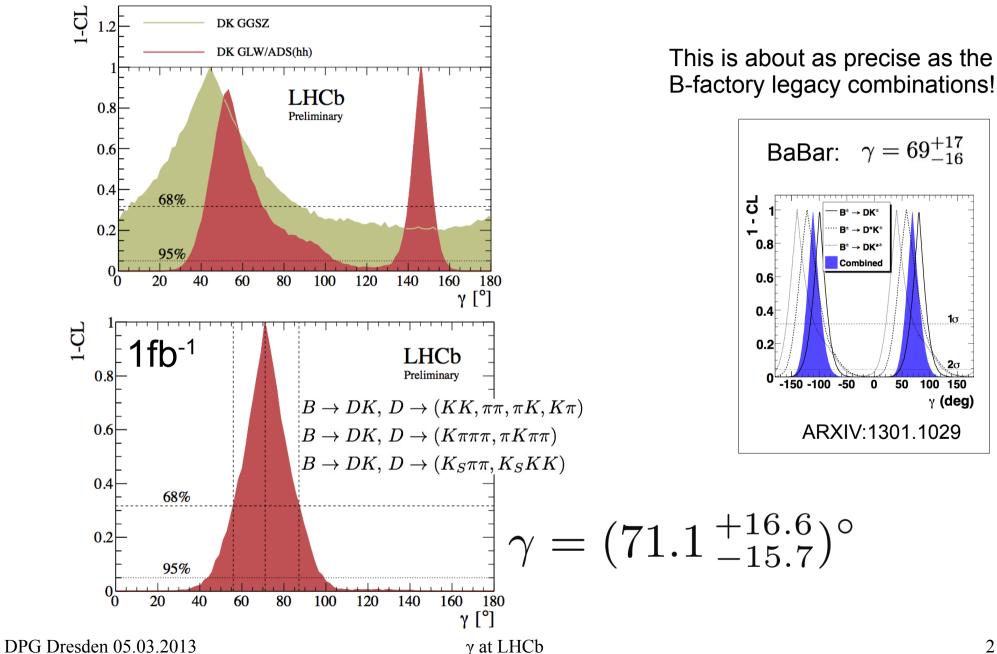
- We now have measured a total of 24 γ -related observables. What does it mean for γ ?
- At the CKM2012 conference, both Babar and Belle presented their legacy combinations.
- LHCb showed first results!
 - frequentist procedure
 - for the first time including the $B \rightarrow D\pi$ system
 - considering CP violation in charm decays
 - partially considering charm mixing
- Combined likelihood:

$$\mathcal{L}(\vec{y}) = rac{1}{N} \exp\left(-rac{1}{2}(\vec{y} - \vec{y_t})^T V_{
m cov}^{-1}(\vec{y} - \vec{y_t})
ight)$$

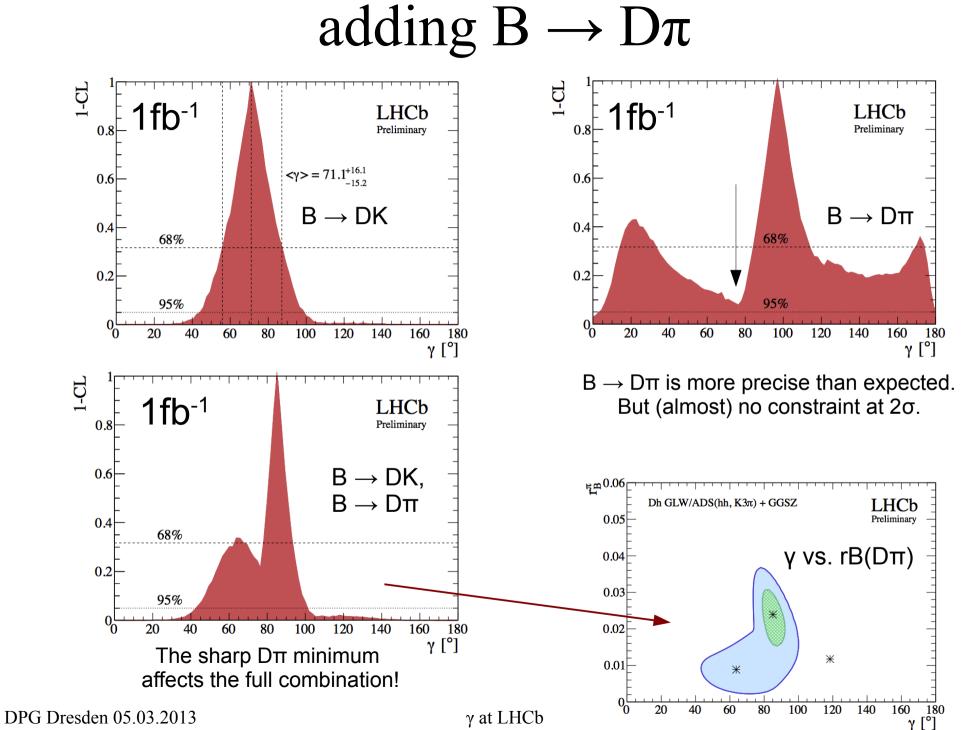
 $\chi^2(\vec{y}) = -2 \ln \mathcal{L}(\vec{y}) \;.$

statistical treatment

- The combined likelihood has a very rich structure:
 - many nuisance parameters
 - many trigonometrical functions, thus **many local minima**
 - **varying dimensionality** of the likelihood, if depends on the value of the nuisance parameters, potentially affecting the coverage


- Use a Feldman-Cousins based frequentist method (likelihood ratio ordering).
- Compute the actual distribution of the test statistic (Δχ²) using toy Monte Carlo ("plug-in" method).
- Test the coverage at the best-fit point.

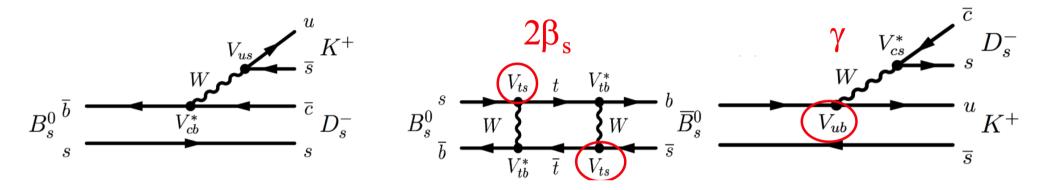
coverage test:


$D^0 K \ \& \ D^0 \pi$	α			
$\eta = 0.6827$	0.6616 ± 0.0067			
$\eta=0.9545$	0.9586 ± 0.0028			
$\eta = 0.9973$	0.9958 ± 0.0009			

LHCb-CONF-2012-032

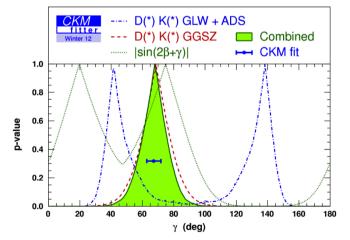
$B \rightarrow DK$ only

LHCb-CONF-2012-032

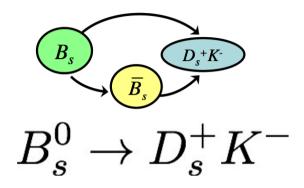


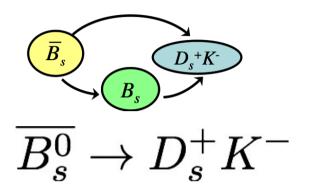
Part IV:

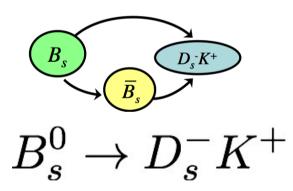
time dependent measurements

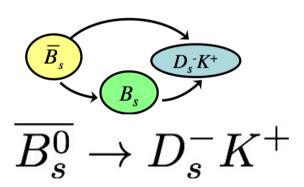

time dependent measurements

- It is also possible to use tree decays of neutral B mesons [1]!
- Using charged-particle final states, interference is achieved through mixing.




- B-factories performed such measurements with $B^0 \rightarrow D^+ \pi^-$, constraining $\sin(2\beta + \gamma)$
- Much better sensitivity expected in $B_s \rightarrow D_s K$, comparable to GGSZ, only really possible at LHCb
 - large amplitude ratio: $r_{DsK} \sim 0.4$
 - finite decay width difference: $\Delta\Gamma = 0.091 \pm 0.011 \text{ ps}^{-1}$ (HFAG fall 2012)


[1] R. Fleischer. New strategies to obtain insights into CP violation through $B_{(s)} \rightarrow D^{\pm}_{(s)}K^{\mp}$, $D^{*\pm}_{(s)}K^{\mp}$, ... and $B_{(d)} \rightarrow D^{\pm}\pi^{\mp}$, $D^{*\pm}\pi^{\mp}$, ... decays. Nucl. Phys., B671:459–482, 2003.

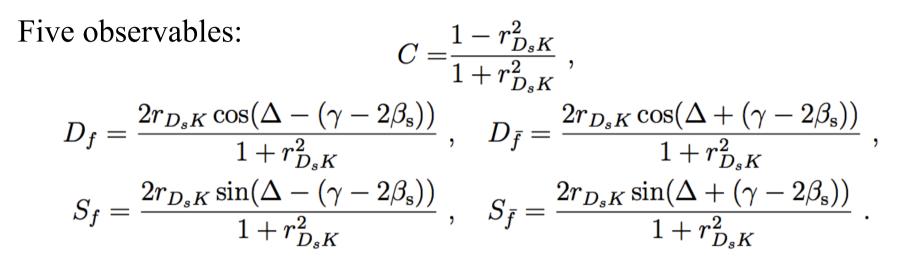


four decay rates

each has their own time dependence

four decay rates

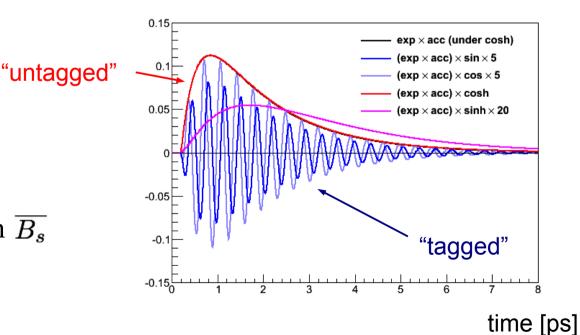
$$\frac{d\Gamma_{B_{g}^{0} \to f}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |A_{f}|^{2} (1 + |\lambda_{f}|^{2}) \qquad \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sin\left(\Delta m_{s}t\right) \right] \qquad (1)$$


$$\frac{d\Gamma_{\bar{B}_{g}^{0} \to f}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |A_{f}|^{2} \left| \frac{p}{q} \right|^{2} (1 + |\lambda_{f}|^{2}) \qquad \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{f} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - C_{f} \cos\left(\Delta m_{s}t\right) + S_{f} \sin\left(\Delta m_{s}t\right) \right] \qquad (2)$$

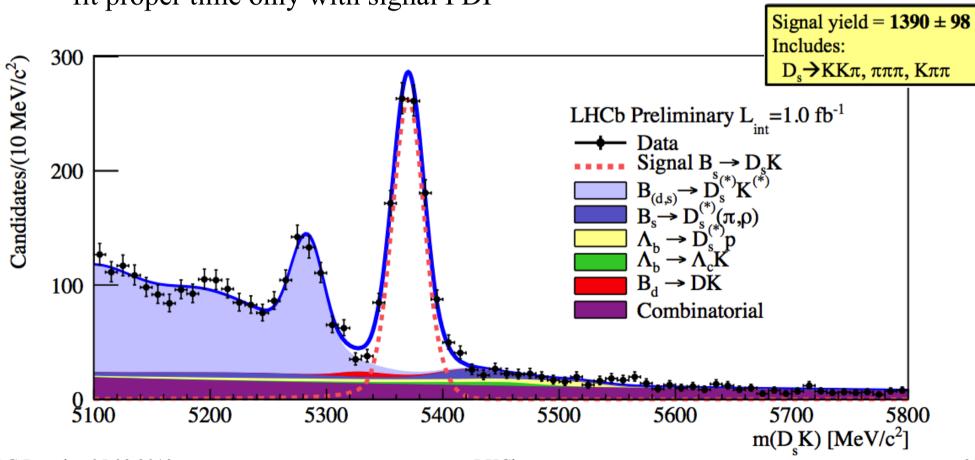
$$\frac{d\Gamma_{\bar{B}_{g}^{0} \to \bar{f}}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |\bar{A}_{\bar{f}}|^{2} (1 + |\bar{\lambda}_{\bar{f}}|^{2}) \qquad \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{\bar{f}} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + C_{\bar{f}} \cos\left(\Delta m_{s}t\right) \right] \qquad (3)$$

$$\frac{d\Gamma_{\bar{B}_{g}^{0} \to \bar{f}}(t)}{dt \, e^{-\Gamma_{s}t}} = \frac{1}{2} |\bar{A}_{\bar{f}}|^{2} \left| \frac{q}{p} \right|^{2} (1 + |\bar{\lambda}_{\bar{f}}|^{2}) \qquad \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + D_{\bar{f}} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - C_{\bar{f}} \cos\left(\Delta m_{s}t\right) + S_{\bar{f}} \sin\left(\Delta m_{s}t\right) \right] \qquad (4)$$

 $\boldsymbol{\gamma}$ at LHCb

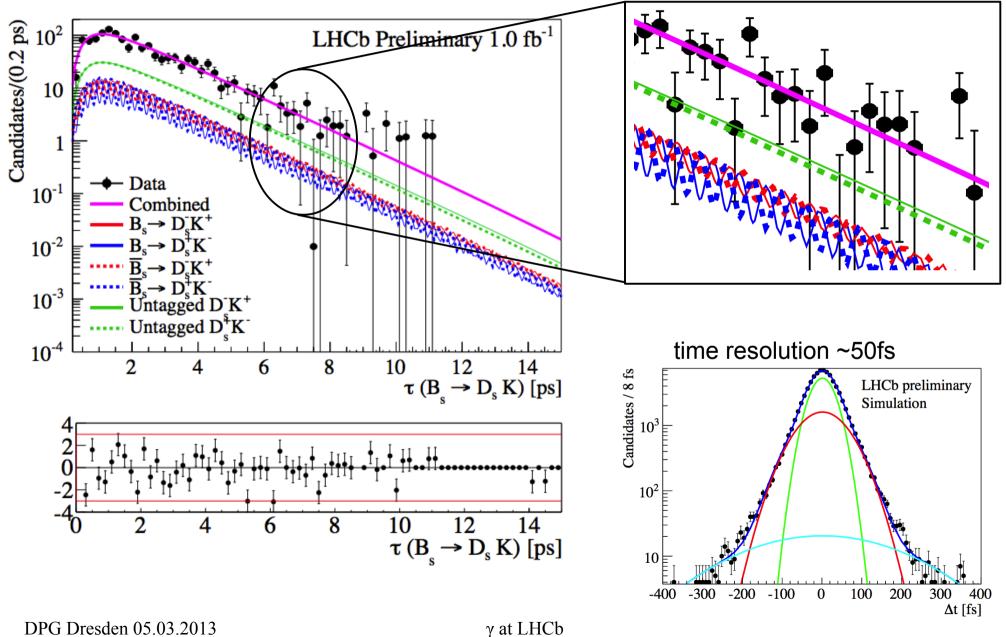

observables

Measurement:


- excellent time resolution needed to resolve fast B_s oscillations
- flavor tagging to tell B_s from $\overline{B_s}$

 $\epsilon D^2 = 1.9\%$

mass plot


- rich physics backgrounds all could have different time structure!
- employ an "sFit" technique ("cFit" available):
 - use B_s mass as discriminating variable to compute per-event weights

fit proper time only with signal PDF

LHCb-CONF-2012-029

time dependent DsK

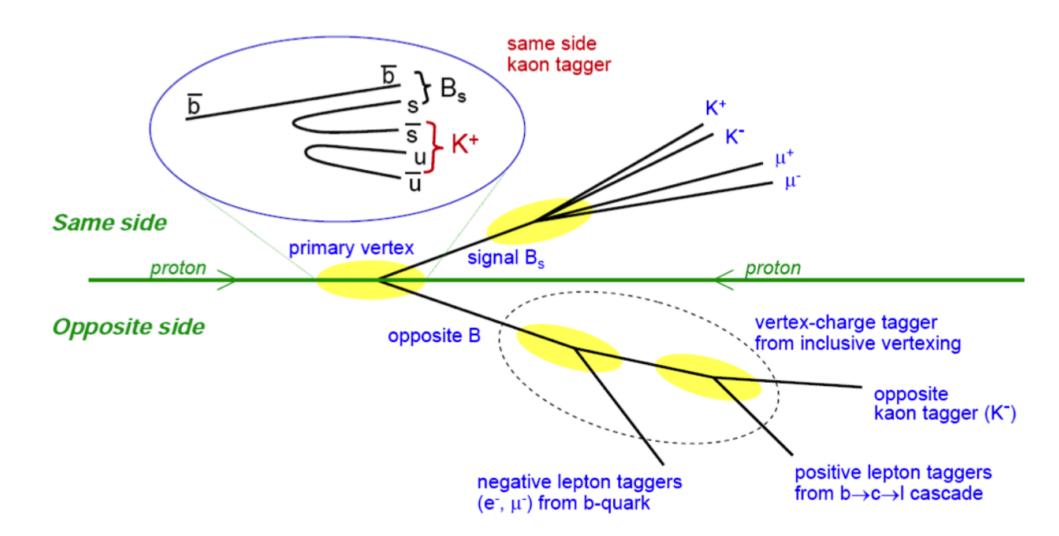
LHCb-CONF-2012-029

result

	C	S_f	$S_{ar{f}}$	D_f	$D_{ar{f}}$
Toy corrected central value	1.01	-1.25	0.08	-1.33	-0.81
Statistical uncertainty	0.50	0.56	0.68	0.60	0.56
Systematic uncertainties (σ_{stat})					
Decay-time bias	0.03	0.05	0.05	0.00	0.00
Decay-time resolution	0.11	0.08	0.09	0.00	0.00
Tagging calibration	0.23	0.17	0.16	0.00	0.00
Backgrounds	0.15	0.07	0.07	0.07	0.07
Fixed parameters	0.15	0.22	0.20	0.40	0.42
Asymmetries	0.12	0.01	0.04	0.00	0.02
Momentum/length scale	0.00	0.00	0.00	0.00	0.00
k-factors	0.27	0.27	0.27	0.08	0.08
Bias correction	0.03	0.03	0.03	0.03	0.03
Total systematic (σ_{stat})	0.46	0.50	0.35	0.43	0.46

- statistically limited, but non-negligible systematic errors
- no constraints on γ yet (warning: syst. correlations cannot be neglected)
- significant update planned

Conclusion


Conclusion

- In the era of precision flavor physics, γ provides a set point of the Standard Model because of its negligible theoretical uncertainty (tree decays).
 - does the unitarity triangle close?
 - can probe for new physics at very high energy scales
- First LHCb measurements are available.
 - been statistically lucky with $B \rightarrow D\pi$
- with 1fb⁻¹ already at the precision of the B factories
- For the first time, attempt to measure γ in time-dependent analysis of $\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}\mathbf{K}$ high precision seems possible!

 $\gamma = (71.1 \, {}^{+16.6}_{-15.7})^\circ \quad {}^{\rm B \, \rightarrow \, \rm DK \, only, \, LHCb \, at \, CKM2012}_{\rm preliminary}$

Backup

flavor tagging

