Suche nach dem Higgs-Boson des Standardmodells im Zerfall H-+tt mit AFLAS

Stan Lai, Universität Freiburg 07. März 2013 DPG Tagung, Dresden

Stan Lai

Suche nach $H \rightarrow \tau \tau$ mit ATLAS

07 März 2013

Eine große Entdeckung....

Juli 2012:

First observations of a new particle in the search for the Standard Model Higgs boson at the LHC

ATLAS

150

10

10

s = 7-8 TeV

Entdeckung eines neuen Teilchens mit Masse ~ 125 GeV

Große Entdeckungen ergeben neue große Fragen:

Was ist dieses neue Teilchen? Ist es wirklich das Higgs-Boson des Standardmodells?

Kann dies das Phänomen der Masse aller Teilchen erklären?

Führt das Teilchen zu Phänomenen jenseits des Standardmodells?

Stan Lai

(1964: Englert, Brout, Higgs, Guralnik, Hagen, Kibble)

- → allgegenwärtiges **Higgs-Feld**: v ≈ 246 GeV
- → Teilchen erwerben Masse durch Kopplung ans Higgs-Feld: m ~ v
- → Ein zusätzliches Teilchen vorhergesagt als Quantisierung des Higgs-Feldes: Das Higgs-Boson

Masse des Higgs-Bosons ein freier Parameter der Theorie

Eigenschaften des Higgs-Bosons am LHC

D712/mb-26/06/93

Der ATLAS-Detektor

Die Herausforderung – SM Untergrund

Higgs-Bosonen werden viel seltener erzeugt als andere Prozesse

Vorhersagen des Standardmodells bestätigt mit guter Genauigkeit

Suche nach H→ττ mit ATLAS

150

20

250 m_{4l} [GeV]

200

50

100

Events-Fit

300 200

100F

-100 -200 10(

Ist das Teilchen ein Boson? ja! Koppelt das Teilchen an Vektor-Bosonen? ja! Koppelt das Teilchen an Quarks? wahrscheinlich Koppelt das Teilchen an Leptonen? unbekannt!

m_{γγ} [GeV]

SM Vorhersage: $H \rightarrow \tau \tau$ Verzweigungsverhältnis ist 6.3%

10

100

Die Suche nach $H \rightarrow \tau \tau$ wichtig, um zu beantworten, ob das Teilchen an Leptonen koppelt

Stan Lai

200

150

250

300

*m*_τ [GeV]

Die Suche nach $H \rightarrow \tau \tau$

Wir nutzen:

- Topologie der Produktion
- alle Zerfallsmodi

Herausforderungen:

- Identifizierung der Tau-Leptonen
- Rekonstruktion der Masse des Higgs-Kandidaten
- Kategorisierung der Ereignistopologien
- Abschätzung der Untergrundprozesse

Suche basiert auf 4.6 fb⁻¹ 7 TeV Daten und 13 fb⁻¹ 8 TeV Daten

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

Tau Identifizierung

3500

Data 2011 $\tau (W \rightarrow \tau v)$

 $\int dt L = 4.6 \text{ fb}^{-1}$ s = 7 TeV

Before tau ID

Jets

 e/μ ($W \rightarrow |v\rangle$)

ATLAS Preliminary

Events/0.02 • eine oder drei Spuren 3000 schmale, isolierte Kalorimeterschauer 2500 Spurinformation vereinbar mit Masse 2000 und Lebensdauer des Tau-Leptons 1500 1000 10⁵ Inverse Background Efficiency 500 ATLAS Preliminary BDT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Likelihood dt L = 370 pb^{-1} 10^{2} Information in einem verstärkten Entscheidungsbaum (BDT) vereint 10^{2} große Trennkraft gegen Jets und Elektronen 10 Multi Prong $p_{-} > 20 \text{ GeV}, |\eta| < 2.3$ 0.8 0.9 02 0.5 0.6 0.7 03 0.4 'n Signal Efficiency

Signaturen von hadronischen Tau Zerfällen:

BDT score

Nachweiswahrscheinlichkeit und Energieskala für Tau-Leptonen

⁻ractional uncertainty

0.1

0.08

0.06

0.04

0.02

Λ

ATLAS Preliminary

√s = 8 TeV

1 prong decays

П

|η|<0.3

2012 Data + Simulation

۵

Δ

Material modeling

Total uncertainty

Non-closure

Single particle resp

Underlying event

Pile-Up

П

Х

 ∇

Verständnis der Energieskala von E/p-Studien der einzelner Hadronen

2-5% Unsicherheit

Nachweiswahrscheinlichkeit gemessen durch inklusiven $Z \rightarrow \tau \tau$ Datensatz

4-5% Unsicherheit

Rekonstruktion von $M_{\tau\tau}$

e/u

- Missing Mass Calculator (MMC)
- Annahme: E_{T}^{miss} verursacht nur durch Neutrinos
- Abtastung der Neutrinorichtungen liefert wahrscheinlichste Masse

ETmiss

Thad

Kategorisierung der Ereignistopologien

Kategorisierung der Ereignistopologien erhöht die Sensitivität der Suche

2012 Kategorisierung dargestellt, 2011 Kategorisierung ähnlich

Suche nach $H \rightarrow \tau \tau$ mit ATLAS

Untergrundabschätzung

Z→ττ Untergrundabschätzung

Einbettungsmethode

- Auswahl von Z→µµ Datenereignisse (hohe Reinheit)
- Entfernung der Myonen und Ersetzung durch simulierte τ Zerfälle

Lieferung einer Daten-basierten Untergrundabschätzung

- Größen wie E_T^{miss} und N_{jets} , die schwierig zu modellieren sind, werden aus Daten genommen
- Normierung durch Simulation $(\tau_{lep} \tau_{lep})$ oder in Daten-Kontrollregion $(\tau_{lep} \tau_{had}, \tau_{had} \tau_{had})$

Ergebnisse: "boosted"-Kategorie

"boosted"-Kategorie: höchst sensitiv für Produktion in gg \rightarrow H • großes E_{τ}^{miss} unterdrückt Untergrunde und verbessert Massenauflösung

Signal Anteil: ggF 70%, VBF 20%, VH 10%

Ergebnisse: VBF-Kategorie

höchste Sensitivität von der VBF-Kategorie Signal Anteil: ggF 25%, VBF 75%

geringe Ereignisanzahl aber gutes Signal- zu Untergrund-Verhältnis (S/B ~ 5-10%)

Systematische Unsicherheiten

dominante theoretische Unsicherheiten für Signal:

- QCD Skala auf ggF Produktion (Jet Kategorisierung)
- "underlying event" für VBF-Produktion

Signal	$ au_{lep} au_{lep}$	$ au_{lep} au_{had}$	$ au_{had} au_{had}$
Jet-Energieskala	1-5% (Form)	3-9% (Form)	2-4% (Form)
Tau-Energieskala		2-9% (Form)	4-6% (Form)
Tau-Nachweiswahrscheinlichkeit		4-5%	10%
Theorie Unsicherheit	8-28%	18-23%	3-20%
Trigger-Nachweiswahrscheinlichkeit	klein	klein	5%

dominante Unsicherheiten auf $Z \rightarrow \tau \tau$ Untergrund:

- Normierung des Einbettungsdatensatzes
- Tau Energieskala

Z→ττ Untergrund	$ au_{lep} au_{lep}$	$ au_{lep} au_{had}$	$\tau_{had} \tau_{had}$
Einbettungsmethode	1-4% (Form)	2-4% (Form)	1-4% (Form)
Tau-Energieskala		4-15% (Form)	3-8% (Form)
Tau-Nachweiswahrscheinlichkeit		4-5%	1-2%
Normierung	5%	4-16%	9-10%
Trigger-Nachweiswahrscheinlichkeit	2-4%	2-5%	2-4%

Ausschlussgrenze und P-Wert

Profillikelihood auf MMC Masse um Signal zu extrahieren kein signifikanter Überschuss 95% CL Ausschlussgrenze auf u= σ/σ

• kein signifikanter Überschuss, 95% CL Ausschlussgrenze auf $\mu = \sigma / \sigma_{_{SM}}$ berechnet

Signalstärke (μ): 0.7 ± 0.7

Suche nach H→ττ mit ATLAS

Ausblick

G. Klämke, D. Zeppenfeld, hep-ph/07030202

Suche nach $H \rightarrow \tau \tau$ mit vollständigem 2011/2012 Datensatz soll besser unterscheiden zwischen Untergrund- und SM-Hypothesen

• multivariate Analysen für Ereignisauswahl wird Sensitivität verbessern

Higgs-Eigenschaften können in diesem Kanal untersucht werden

- Messung von Signalstärken getrennt in ggF- und VBF-Produktion
- CP- und Spin-Quantenzahlen

$H \rightarrow \tau \tau$ ist ein wichtiger Kanal um das neue Teilchen zu verstehen!

More Slides for Your Reading Pleasure

"You want proof? I'll give you proof!"

Das Standardmodell

Problem: Teilchen müssen aber masslos sein! Massen dürfen nicht direkt eingeführt werden

Je stärker wechselwirkt ein Teilchen mit dem Higgs-Feld, desto größer Masse bekommt es

Large Hadron Collider: LHC

Ausschlussgrenze der Subkanälen

Ein H $\rightarrow \tau_{\mu}\tau_{h}$ Kandidat

Run Number: 204265, Event Number: 178165311

Date: 2012-06-02 19:53:30 CEST

Ein VBF $H \rightarrow \tau_e \tau_\mu$ Kandidat

Run Number: 209381, Event Number: 72873013 Date: 2012-08-28 04:17:16 CEST

17

Ereigniserträge

$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	7 TeV analysis (4.6 fb ⁻¹)		8 TeV analys	sis (13.0 fb ⁻¹)
	VBF category	Boosted category	VBF category	Boosted category
$gg \rightarrow H (125 \text{ GeV})$	$0.36 \pm 0.06 \pm 0.12$	$2.4 \pm 0.2 \pm 0.7$	$1.0 \pm 0.1 \pm 0.3$	$8.2 \pm 0.4 \pm 1.8$
VBF H (125 GeV)	$1.12 \pm 0.04 \pm 0.18$	$0.68 \pm 0.03 \pm 0.07$	$3.01 \pm 0.09 \pm 0.48$	$1.98 \pm 0.07 \pm 0.30$
VH (125 GeV)	< 0.02	$0.61 \pm 0.05 \pm 0.06$	< 0.05	$1.4 \pm 0.2 \pm 0.2$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$20 \pm 2 \pm 3$	$392 \pm 9 \pm 12$	$50 \pm 4 \pm 6$	$1080 \pm 20 \pm 110$
W/Z boson+jets	$1.5 \pm 0.7 \pm 0.4$	$5 \pm 1 \pm 1$	0.4 ± 0.4	$90 \pm 20 \pm 30$
Тор	$1.0 \pm 0.2 \pm 0.2$	$3.0 \pm 0.3 \pm 0.5$	1.4 ± 1.0	$21 \pm 3 \pm 5$
Diboson	$0.10 \pm 0.07 \pm 0.02$	$4.4 \pm 0.6 \pm 0.7$	< 0.01	< 0.5
Multijet	$10.2 \pm 0.9 \pm 5.0$	$156 \pm 6 \pm 30$	$44 \pm 5 \pm 7$	$420 \pm 20 \pm 60$
Total background	32.5 ± 2.2 ± 5.9	561 ± 11 ± 32	$96 \pm 6 \pm 9$	$1607 \pm 37 \pm 130$
Observed data	38	535	110	1435

Process	Events		
	Boosted	VBF	
$gg \rightarrow H (125 \text{ GeV})$	$20.3 \pm 0.7 \pm 5.1$	$0.5 \pm 0.1 \pm 0.3$	
VBF H (125 GeV)	$5.3 \pm 0.2 \pm 0.3$	$2.5 \pm 0.2 \pm 0.4$	
VH (125 GeV)	$2.7 \pm 0.2 \pm 0.2$	< 0.001	
$Z/\gamma^* \to \tau \tau^{\dagger}$	$(1.78 \pm 0.03 \pm 0.11) \times 10^3$	$17 \pm 2 \pm 6$	
Diboson [†]	$12.2 \pm 0.9 \pm 1.0$	$0.6 \pm 0.3 \pm 0.4$	
$Z/\gamma^* ightarrow \ell \ell^\dagger$	$18 \pm 9 \pm 4$	$1.7 \pm 0.5 \pm 1.2$	
Top [†]	$111 \pm 8 \pm 33$	$2.0 \pm 0.7 \pm 1.0$	
W boson + jets (OS-SS)	$(0.27 \pm 0.06 \pm 0.04) \times 10^3$	_	
Same sign data	$(0.34 \pm 0.02 \pm 0.01) \times 10^3$	-	
Fake- $\tau_{had-vis}$ backgrounds	-	$7.6 \pm 0.7 \pm 3.8$	
Total background	$(2.53 \pm 0.07 \pm 0.13) \times 10^3$	$29 \pm 2 \pm 7$	
Observed data	2602	29	

		$ee + \mu\mu + e\mu$		Table Inc.
	VBF category	Boosted category	VH category	1-jet category
$gg \rightarrow H (125 \text{ GeV})$	$1.3 \pm 0.2 \pm 0.4$	$12.4 \pm 0.6 \pm 2.9$	$2.5 \pm 0.3 \pm 0.6$	$7.0 \pm 0.5 \pm 1.6$
VBF H (125 GeV)	$3.63 \pm 0.10 \pm 0.02$	$3.36 \pm 0.09 \pm 0.30$	$0.21 \pm 0.03 \pm 0.02$	$1.82 \pm 0.07 \pm 0.18$
VH (125 GeV)	$0.01 \pm 0.01 \pm 0.01$	$2.20 \pm 0.05 \pm 0.22$	$0.64 \pm 0.03 \pm 0.09$	$0.44 \pm 0.02 \pm 0.05$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$47 \pm 2 \pm 1$	$(1.24 \pm 0.01 \pm 0.08) \times 10^3$	$393 \pm 7 \pm 26$	$(0.86 \pm 0.01 \pm 0.06) \times 10^3$
$Z/\gamma^* \to \ell\ell$	$14 \pm 3 \pm 2$	$(0.21 \pm 0.02 \pm 0.04) \times 10^3$	$(0.08 \pm 0.01 \pm 0.02) \times 10^3$	$(0.16 \pm 0.01 \pm 0.03) \times 10^3$
Top	$15 \pm 2 \pm 3$	$(0.39 \pm 0.01 \pm 0.07) \times 10^3$	$87 \pm 4 \pm 23$	$117 \pm 5 \pm 18$
Diboson	$3.6 \pm 0.8 \pm 0.6$	$55 \pm 3 \pm 10$	$15 \pm 1 \pm 4$	$40 \pm 3 \pm 7$
Backgrounds with fake leptons	$12 \pm 2 \pm 3$	$102 \pm 7 \pm 23$	$86 \pm 4 \pm 16$	$230 \pm 8 \pm 52$
Total background	$91 \pm 5 \pm 5$	$(2.01 \pm 0.03 \pm 0.12) \times 10^3$	$(0.66 \pm 0.02 \pm 0.05) \times 10^3$	$(1.40 \pm 0.02 \pm 0.08) \times 10^3$
Observed data	98	2014	636	1405

Selektionskriterien

2-jet VBF	Boosted	2-jet VH	1-jet	
Pre-selection: exactly two leptons with opposite charges				
$30 \text{ GeV} < m_{\ell\ell} < 75 \text{ GeV} (30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$				
for same-fi	avor (different-flavor) le	eptons, and $p_{T,\ell_1} + p_{T,\ell_2} > 3$	5 GeV	
At least	one jet with $p_T > 40 \text{ G}$	$eV (JVF_{jet} > 0.5 \text{ if } \eta_{jet} < 2$	2.4)	
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV (E_T^{miss} > 20 \text{ GeV})$ for	r same-flavor (different-flavo	r) leptons	
	$H_{\rm T}^{\rm miss}$ > 40 GeV for	same-flavor leptons		
	0.1 < 2	$x_{1,2} < 1$		
	$0.5 < \Delta c$	$p_{\ell\ell} < 2.5$		
$n_{\rm T} = 25 \text{GeV} (\text{IVF})$	excluding 2_iet VBF	$n_{\pi} = 25 \text{ GeV} (IVF)$	excluding 2-jet VBF,	
$p_{T,J2} > 25 \text{ GeV} (3 \text{ VI})$	excluding 2-jet v Dr	$p_{T,j2} > 25 \text{ GeV}(5 \text{ V} \text{ F})$	Boosted and 2-jet VH	
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 \text{GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$	
$m_{jj} > 400 \text{ GeV}$	b-tagged jet veto	$\Delta \eta_{jj} < 2.0$	b-tagged jet veto	
b-tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$		
Lepton centrality and CJV		b-tagged jet veto		
0-jet (7 TeV only)				
Pre-	selection: exactly two le	eptons with opposite charges		
Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV				
$\Delta \phi_{\ell\ell} > 2.5$				
	b-tagged	l jet veto		

Selektionskriterien

7 TeV		8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
▶ <i>p</i> _T ^{Thad-vis} >30 GeV	-	$\triangleright p_{\rm T} \tau_{\rm had-vis} > 30 {\rm GeV}$	$\triangleright p_{\rm T} \tau_{\rm had-vis} > 30 {\rm GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
$\triangleright \geq 2$ jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$	$\triangleright \ge 2$ jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_{\rm T}^{j1}$, $p_{\rm T}^{j2}$ > 40 GeV	$> 0 < x_1 < 1$	▶ $p_{\rm T}$ ^{<i>j</i>1} > 40, $p_{\rm T}$ ^{<i>j</i>2} >30 GeV	$> 0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	
$> m_{jj} > 500 \text{ GeV}$	► Fails VBF	$> m_{jj} > 500 \text{ GeV}$	▶ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
▶ $p_{\rm T}$ Total < 40 GeV	-	$\triangleright p_{\rm T}^{\rm Total} < 30 {\rm GeV}$	-	
-	-	▶ $p_{\rm T}^{\ell} > 26 {\rm GeV}$	-	
• $m_{\rm T}$ <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• m _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
	-	 b-tagged jet veto 	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, $p_{\rm T}$ >25 GeV	▶ 0 jets $p_{\rm T}$ >25 GeV	▶ ≥ 1 jet, $p_{\rm T}$ >30 GeV	▶ 0 jets $p_{\rm T}$ >30 GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
▹ Fails VBF, Boosted	▶ Fails Boosted	▹ Fails VBF, Boosted	▹ Fails Boosted	
• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <30 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

Selektionskriterien

Cut	Description
Preselection	No muons or electrons in the event
	Exactly 2 medium τ_{had} candidates matched with the trigger objects
	At least 1 of the τ_{had} candidates identified as tight
	Both τ_{had} candidates are from the same primary vertex
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$
	$ au_{had}$ candidates have opposite charge and 1- or 3-tracks
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$
	$\Delta\eta(\tau,\tau) < 1.5$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV
	$\eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
Boosted	Fails VBF
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset
	$\Delta R(\tau_1,\tau_2) < 1.9$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.

Verteilungen der 1-Jet Kategorie

S

Daten-basierte Untergrundabschätzung

- Multijet-Untergrund besonders wichtig für $\tau_{had} \tau_{had}$ Kanal
- Untergrundabschätzung durch eine 2D Anpassung der Tau-Spurmultiplizität
- Template für H/Z $\rightarrow \tau \tau$ von Simulation, für Multijet von gleichgeladenen Ereignissen

Form der MMC Massenverteilung des Multijet-Untergrundes:

- nutzt Ereignisse wo Tau-Identifizierung nicht erfüllt ist
- umgewichtet für unterschiedliche Kinematik

Stan Lai

Datennahme und "Pile-Up"

Suche basiert auf 4.6 fb⁻¹ 7 TeV Daten und 13 fb⁻¹ 8 TeV Daten

Suche nach $H \rightarrow \tau \tau$ mit ATLAS

The MSSM Higgs Sector

Two-doublet Higgs sector $(Y = \pm 1)$

Five Higgs bosons

- neutral, CP even: h, H
- neutral, CP odd: A

• charged: H[±]

Two free parameters describe couplings m_A , $\tan\beta$ or m_{H^+} , $\tan\beta$ (at Born-level) • $\tan\beta = v_{\mu}/v_{d}$ (ratio of Higgs VEV)

Enhanced couplings of h/H to down-type fermions with high $tan\beta$

Interesting signatures

- light charged Higgs searches ($m_{H^+} < m_{top}$) in $H^{\pm} \rightarrow \tau v$ decays
- neutral Higgs searches in $\Phi \rightarrow \tau \tau$ decays ($\Phi = h/H/A$)

Stan Lai

CMS HCP 2012 Results

95% CL Limit (m_H = 125 GeV, null-hypothesis): 1.0 x SM (expected), 1.63 x SM (observed) signal significance (m_{H} = 125 GeV, SM-hypothesis): 2.45 σ (expected), 1.5 σ (observed)

Best fit signal strength (μ): 0.7 ± 0.5

CMS Moriond 2013 Results

- Broad excess observed over range of m_H
- Maximum local significance of **2.930** at 120 GeV, compatible with presence of 125 GeV SM scalar boson
- Observed (expected) significance of 2.85σ
 (2.62σ) for m_H = 125 GeV

CMS Moriond 2013 Results

- Consistent picture across channels and categories
- Combined best-fit µ̂ of 1.1±0.4

AS