Messungen der Higgs-Boson-Eigenschaften mit dem ATLAS Experiment

Johannes Elmsheuser

Ludwig-Maximilians-Universität München

7. März 2013 DPG Tagung 2013, Dresden

Scalar boson discovery

The local probability p0 for a background-only experiment to be more signal-like than the observation as a function of m_H for various individual channels

ATLAS DATASETS

Integrated Luminosity for Analysis:

- 20.7 fb⁻¹ (2012)
- 4.7 fb⁻¹ (2011)

2012:

Interactions per crossing:

- < μ >=20.7
- With peaks up to 40

Higgs boson:

- Mass \approx 125 GeV
- Charge 0
- Spin 0
- Non-universal couplings

 \rightarrow supposed to give mass to SM particles

The Standard Model and the Higgs boson (II)

Firm predictions for the SM Higgs boson:

- Fundamental scalar field
- Non-zero vacuum expectation value
- SU(2) gauge interactions generate the W and Z masses
- Yukawa interactions generate fermion masses \rightarrow coupling strengths are related to the masses of the related particles
- Quantum excitation of the field: Higgs boson

Experimental verifications and tests needed

PRODUCTION OF A SM HIGGS BOSON AT THE LHC

Gluon fusion:

- calculated at NNLO
- Vector boson fusion:
 - calculated at NNLO
 - distinctive experimental signature:
 - 2 forward jets and rapidity gap

DECAYS OF A SM HIGGS BOSON

Low to intermediate m_H range:

- $\gamma\gamma$: very clean but small BR
- $\tau\tau$: VBF to reduce BG
- *bb*: huge QCD BG, some potential in assoc. prod.
- $\mu\mu$: very small BR

Intermediate to high m_H range:

• *WW* and *ZZ* most sensitive channels

HIGGS BOSON MASS m_H , TOTAL WIDTH, NUMBER

- 2 most sensitive channels for m_H : $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$
- Theoretical true width $\approx\!\!4$ MeV, so we can only confirm that width corresponds to experimental resolution of $\approx\!\!1\text{-}2$ GeV
- So far one peak observed with $m_H \approx 125$ GeV, No other SM Higgs-like signal observed for any other mass

PROPERTIES OF THE SM HIGGS BOSON

- Higgs mass is only free parameter in SM:
 - *m_H* ≈125 GeV
- Coupling strength to W and Z:
 - Fixes W and Z masses
 - $WW \rightarrow WW$ scattering unitary
- Coupling strength to fermions:
 - Fixes fermion masses
- Spin 0 and CP even:
 - $\bullet \ \to \mathsf{SM} \ \mathsf{Higgs} \ \mathsf{boson}$

MEASUREMENT OF HIGGS BOSON PROPERTIES

Measurement of Higgs couplings to other particles:

• Coupling to W and Z:

• Coupling to fermions:

Coupling includes strength proportional to mass of particle and structure

Boson couplings: $H \rightarrow WW$

- large event yields and clean signature but lack of mass resolution
- Backgrounds: WW, Z/W+jets, top, WZ/ZZ/W γ , QCD

Common pre-selection:

- 2 isolated high p_T leptons (e, μ)
- *Ę*⊤
- Δφ_{ℓℓ} cut in transverse plane

Exclusive analysis in bins of jet multiplicities:

- 0-jets: optimized for gluon-fusion, purest channels, least affected by top BG
- 1-jet: more affected by top BG
- 2-jets: optimized for VBF (tag jets in opposite hemispheres, rapidity gap), small signal expected

Boson couplings: $H \rightarrow WW$ Results (I)

- Data driven techniques to estimate main background contributions
- Main backgrounds estimated in control regions, extrapolated into signal region
- Cross-contamination of different backgrounds in various control regions taken into account
- Analysis optimized in each jet-bin and for each mass hypothesis
- final discriminating observable: transverse mass $m_T = \sqrt{(E_T^{\ell \ell} + E_T^{miss})^2 (P_T^{\ell \ell} + P_T^{miss})^2}$

Johannes Elmsheuser (LMU München)

BOSON COUPLINGS: $H \rightarrow WW$ RESULTS (II)

• Strength: $\mu = 1.48^{+0.35}_{-0.33}$ (stat) $^{+0.41}_{-0.36}$ (sys th) $^{+0.28}_{-0.27}$ (sys exp) ± 0.05 (lumi)

•	At	$m_H = 125$	GeV:	
---	----	-------------	------	--

- 2.6 σ (observed)
- 1.9 σ (expected)

Source	Upward uncertainty (%)	Downward uncertainty (%)
Statistical uncertainty	+23	-22
Signal yield $(\sigma \cdot B)$	+14	-9
Signal acceptance	+9	-6
WW normalisation, theory	+20	-20
Other backgrounds, theory	+9	-9
W+jets fake rate	+11	-12
Experimental + bkg subtraction	+14	-11
MC statistics	+8	-8
Total uncertainty	+41	-38

Fermion couplings: $H \rightarrow \mu^+ \mu^-$ analysis

Motivation:

- $H \rightarrow \mu^+ \mu^-$ directly probes SM Higgs couplings to 2nd generation fermions
- $B(H[125] \rightarrow \mu^+ \mu^-) = 2.2 \times 10^{-4}$

Search strategy:

- Look for a narrow bump on top of continuous $m_{\mu\mu}$ background distribution
- A blinded search for the SM resonance in 110-150 GeV $m_{\mu\mu}$ window
- Use background fit to data shape/yield
- Dominant background is inclusive Z/γ^* (minor di-bosons, $t\overline{t}$)

Challenges:

- Irreducible background from $Z/\gamma^* \to \mu \mu$
- $\Gamma(H[125]) = 4.1 \text{ MeV}$ signal width is dominated by detector resolution

$H \rightarrow \mu^+ \mu^-$: $m_{\mu\mu}$ and Event yields

Event yields:					
	$ m_H-m_{\mu\mu} \leq 5{ m GeV}$				
Signal [125 GeV]	37.7 ± 0.2				
WW	250 ± 4				
$WZ/ZZ/W\gamma$	30 ± 1				
$t\overline{t}$	1374 ± 13				
Single Top	151 ± 5				
Z+jets	15810 ± 130				
W+jets	88 ± 6				
Total Bkg.	17700 ± 130				
Observed	17442				

Invariant mass $m_{\mu\mu}$

$H \rightarrow \mu^+ \mu^-$: Signal and BG parametrization

Background model is sum of a Breit-Wigner (BW) and exponential function

Signal described by convolution of Crystal Ball + Gaussian functions

160

$H \to \mu^+ \mu^-$: Results

- At *m_H*=125 GeV:
 - Observed limit: $9.5 \cdot \sigma_{SM}$
 - Expected limit: 8.2·σ_{SM}

MEASUREMENT OF HIGGS BOSON PROPERTIES

SM predicts Higgs boson couplings strength and structure of Higgs couplings:

• Coupling to W and Z:

Coupling to fermions:

If not SM CP even coupling (but still Spin 0): parametrize cross section

Johannes Elmsheuser (LMU München)

CP AND SPIN OBSERVABLES

If not SM Spin 0 and CP even: no rate prediction \rightarrow No rate measurement for Spin and CP \rightarrow Need angular variables

- Best with $H \rightarrow ZZ \rightarrow 4\ell$
- similar for $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ but some loss due to neutrinos

Effect of different spin or CP properties parametrized by 5 variables:

- Invariant mass of each of the two Z / W bosons
- Polar angles θ₁, θ₃ of fermions in corresponding rest frames of Z / W bosons
- Angle Φ_3 between decay planes of 2 Z / W bosons in Higgs rest frame

CP odd expectation: $H \rightarrow ZZ \rightarrow 4\ell$

- from arXiv:hep-ph/1208.4018 (JHU generator)
- 0⁺ (red) vs. 0⁻ (blue)

CP odd: $H \rightarrow ZZ \rightarrow 4\ell$ measurements (I)

- $H \rightarrow ZZ \rightarrow 4\ell$ has very low rate
- Use multi variate analysis to enhance sensitivity

CP odd: $H \rightarrow ZZ \rightarrow 4\ell$ measurements (II)

- $H \rightarrow ZZ \rightarrow 4\ell$ has very low rate
- · Use multi variate analysis to enhance sensitivity

CP odd: $H \rightarrow ZZ \rightarrow 4\ell$ measurements (III)

- Data disfavors pure CP odd *HZ* coupling
- 0⁻ disfavored at 97.8 % CL.

SPIN PREDICTION

- Has to be a boson, since it decays to γγ, WW, ZZ (and predicted to decay into bb, ττ, μμ)
- Spin 0: SM prediction
- Spin 1:

excluded because of mass-less decay $H\to\gamma\gamma$ Landau-Yang theorem

• Spin 2:

possible, but not a SM Higgs boson

```
• Higher Spin:
```

?

Spin 2 parametrization

$$\begin{split} \mathcal{A}(X \to VV) &= \Lambda^{-1} \left[2 g_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2 g_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu\alpha} \right. \\ &+ g_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + g_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(2 g_5 t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2 g_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu}) + g_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*\epsilon} \epsilon_2^{*} \right) \\ &+ g_8 \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_9 t_{\mu\alpha} \tilde{q}^\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma \\ &+ \frac{g_{10} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*)) \right], \end{split}$$

- For $J^{CP} = 2_m^+$ signal (graviton-like tensor with minimal couplings, $g_1 = g_5 = 1$), most general amplitude of decay into two identical vector bosons contains 10 different terms and 10 effective coupling constants $g_{1..10}$ which are in general complex numbers
- Test for 2_m^+ as in JHU currently

Spin 2 test in $H\to ZZ\to 4\ell$

07/03/2013 26 / 28

Spin 2 test in $H \to \gamma \gamma$

- θ^* polar angle of γ s w.r.t. to z-axis of Collins-Soper frame
- For SM-like $gg \rightarrow H$ production Spin 2 exclusion at 90% CL (97% expected)

SUMMARY

One new boson observed:

- The mass is $m_H = 125.5 \pm 0.2(\text{stat})^{+0.5}_{-0.6}(\text{sys}) \text{ GeV}$
- Signal strength for $m_H = 125$ GeV: $m_H = 125.5$ GeV: $\mu = 1.43 \pm 0.16(\text{stat}) \pm 0.14(\text{sys})$
- First Spin/CP measurements are available with SM preference/agreement but still statistically limited

Outlook:

- Determine fermion couplings and production mechanism rates
- Exciting times with remaining LHC Run 1 data and then with LHC Run 2 ahead of us

BACKUP

ATLAS DETECTOR

General purpose detector

Magnets:	2T solenoid 3 air-core toroids	
Fracking:	silicon $+$ transition	
	radiation tracker	
Muon:	independent system	

EM Calo.: Hadron Calo.: sampling LAr technology plastic scintillator (barrel) LAr technology (endcap)