Zerfälle von *B*- und *D*-Mesonen in Endzustände aus neutralen Kaonen bei LHCb

B- and D-meson decays to two neutral kaons at LHCb

Markward Britsch

Max-Planck-Institut für Kernphysik, Heidelberg

2013-3-7, DPG Frühjahrstagung Dresden 4. bis 8. März 2013

Outline

Introduction

- 2 Decays and physics potential
- 3 $\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0})$ and its polarization measured at LHCb
 - Expected yields at LHCb
- 5 Conclusions

Outline

Introduction

- 2 Decays and physics potential
- ③ $\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0})$ and its polarization measured at LHCb
 - 4 Expected yields at LHCb
 - 5 Conclusions

Measure CP violation (CPV) and search for new physics (NP)

- $B^0_d, B^0_s, D^0 o K^0_s K^0_s, K^0_s K^{*0}, K^0_s ar{K}^{*0}$ and $K^{*0} ar{K}^{*0}$
- can be detected via $K^0_{
 m s} o \pi^+\pi^-$ and $K^{*0} o K^+\pi^-$
- most of these decays have not yet been observed before
 → make first observations and measure branching ratios

In this introduction I will

- show the current experimental status
- briefly remind you about CP violation
- give you a short overview of the LHCb experiment

Experimental status

decay	BR [10 ⁻⁵] (PDG live)	CPV measurements	
$B^0_s o K^{*0} ar{K}^{*0}$	(2.8 ± 0.7)	_	
$B^0_s ightarrow K^0_s K^{st 0}$		-	
$B^0_s o K^0_{ m s} ar K^{st 0}$		-	
$B^0_s ightarrow K^0_s K^0_s$	$<$ 6.6 ($\mathcal{K}^0ar{\mathcal{K}}^0$)	_	
$B^0_d o K^{*0} ar{K}^{*0}$	0.08 ± 0.05	-	
$B^0_d ightarrow K^0_{ m s} K^{st 0}$	$ - 0.19 (\bar{K}^{*0} K^0 \perp K^{*0} \bar{K}^0) $	_	
$B^0_d o K^0_{ m s} ar K^{st 0}$		_	
$B^0_d ightarrow K^0_{ m s} K^0_{ m s}$	$0.096^{+0.020}_{-0.018}$	first meas. exist ¹	
$D^0 o K^{*0} ar{K}^{*0}$	7 ± 5	_	
$D^0 ightarrow K^0_{ m s} K^{st 0}$	< 28	-	
$D^0 ightarrow K^0_{ m s} ar K^{st 0}$	< 50	-	
$D^0 ightarrow K^0_{ m s} K^0_{ m s}$	17 ± 4	${\cal A}_{CP}^{ m dir} = (-23\pm19)~\%^2$	

¹ PRL 97 (2006) 171805, PRL 100 (2008) 121601

2 CLEO, Phys. Rev. D63 (2008) 071101

Flavor mixing

• similar for
$$B_d^0$$
, K^0 , D^0

• new physics could come in, replacing *u*, *c*, *t*, *W*-propagators

The CKM-matrix:

$$\left(\begin{array}{c}d'\\s'\\b'\end{array}\right) = \left(\begin{array}{ccc}V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c}d\\s\\b\end{array}\right)$$

where:

d, s, b – mass eigenstates d', s', b' – weak eigenstates

Flavor mixing

• similar for
$$B_d^0$$
, K^0 , D^0

• new physics could come in, replacing *u*, *c*, *t*, *W*-propagators

The CKM-matrix:

Standard unitarity triangle: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

CPV in interference between mixing and decay

 $B^0 \to f_{CP}$ and $B^0 \to \overline{B^0} \to f_{CP}$, if f_{CP} is *CP*-eigenstate.

CPV in interference between mixing and decay

 $B^0 \to f_{CP}$ and $B^0 \to \overline{B^0} \to f_{CP}$, if f_{CP} is *CP*-eigenstate.

$$B^{0} \xrightarrow{\frac{d\Gamma}{dt}(\overline{B^{0}}(t) \to f_{CP}) - \frac{d\Gamma}{dt}(B^{0}(t) \to f_{CP})}{\frac{d\Gamma}{dt}(\overline{B^{0}}(t) \to f_{CP}) + \frac{d\Gamma}{dt}(B^{0}(t) \to f_{CP})} = \mathcal{A}_{f_{CP}}^{\text{mix}} \sin(\omega t) + \mathcal{A}_{f_{CP}}^{\text{dir}} \cos(\omega t) + \dots$$

$$\phi_{D} \xrightarrow{\phi_{D}} f_{CP} \qquad \mathcal{A}_{f_{CP}}^{\text{mix}} = \mathcal{A}_{f_{CP}}^{\text{mix}}(\phi_{m}, \phi_{D}) \text{ function of unitary triangle angles}$$

$$\overline{B}^{0} \xrightarrow{\phi_{D}} \xrightarrow{f_{CP}} \mathcal{A}_{f_{CP}}^{\text{mix}} = \mathcal{A}_{f_{CP}}^{\text{mix}}(\phi_{m}, \phi_{D}) \text{ function of unitary triangle angles}$$

CPV in interference between mixing and decay

 $B^0 \to f_{CP}$ and $B^0 \to \overline{B^0} \to f_{CP}$, if f_{CP} is *CP*-eigenstate.

$$B^{0} \xrightarrow{\frac{d\Gamma}{dt}(\overline{B^{0}}(t) \to f_{CP}) - \frac{d\Gamma}{dt}(B^{0}(t) \to f_{CP})}{\frac{d\Gamma}{dt}(\overline{B^{0}}(t) \to f_{CP}) + \frac{d\Gamma}{dt}(B^{0}(t) \to f_{CP})} = \mathcal{A}_{f_{CP}}^{\text{mix}} \sin(\omega t) + \mathcal{A}_{f_{CP}}^{\text{dir}} \cos(\omega t) + \dots$$

$$\phi_{D} \qquad \phi_{D} \qquad f_{CP} \qquad \mathcal{A}_{f_{CP}}^{\text{mix}} = \mathcal{A}_{f_{CP}}^{\text{mix}}(\phi_{m}, \phi_{D}) \text{ function of unitary triangle angles}$$

$$\overline{B^{0}} \qquad \overline{B^{0}} \qquad \overline{B^$$

NP also in decay through penguin diagrams (diagrams with loops)

Flavor tagging

Deduce if a B/D or $\overline{B}/\overline{D}$ meson was created \rightarrow flavor tagging

- *D*⁰ can be tagged very efficiently:
 - $D^{*+}
 ightarrow D^0 \pi^+$ versus $D^{*-}
 ightarrow \overline{D}^0 \pi^-$
- for *B* more involved

- tagging power *D*: effective tagging capability
- typical values for *B*-tagging at LHCb are $D \sim 2$ % (Eur. Phys. J. C 72 (2012) 2022) could become 3 % for B_s^0

The LHCb detector at the LHC

- excellent vertex resolution and tracking
- good particle identification (RICH: $\pi/K/p$, ECAL: e/γ , MUON)
- trigger: L0 (hardware: HCAL,ECAL,MUON: high p_T particles) HLT (software: global event reconstruction and selection)

LHCb *pp*-data at $\sqrt{s} = 7$ TeV and 8 TeV

LHCb Integrated Luminosity pp collisions 2010-2012

Integrated luminosity altogether: $\mathcal{L} \sim 3 \text{ fb}^{-1}$

2010:

√s = 7 TeV
 L = 38 pb⁻¹

2011:

√s = 7 TeV
 L = 1 fb⁻¹

2012:

- $\sqrt{s} = 8 \text{ TeV}$
- $\mathcal{L} = 2 \text{ fb}^{-1}$

Future:

- 2015 2017: 4 fb⁻¹
- Upgrade (2020 –): 50 fb⁻¹

Data taking efficiency: 93 %

DeadTime: 2.88 (%)

Markward Britsch (MPIK)

2013-3-7 10 / 24

Outline

Introduction

2 Decays and physics potential

③ $\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0})$ and its polarization measured at LHCb

- 4 Expected yields at LHCb
- 5 Conclusions

$B ightarrow K^{(*)0} ar{K}^{(*)0}$ diagrams

Decay dominated by this diagram:

For $B^0_d \to K^{(*)0}\bar{K}^{(*)0}$: $s \leftrightarrow d$ \Rightarrow U-spin symmetry in flavor-SU(3)

CPV-predictions difficult due to strong (QCD) phases. Constrain free parameters by U-spin or isospin. Issue: both can be broken.

• first observations and branching ratios

- first observations and branching ratios
- $\mathcal{B}(B_s^0 \to K_s^0 K_s^0)$ for measurement of CKM-angle γ :

Phys. Lett. B 459 (1999) 306 and Phys. Rev. D 65 (2002) 113008

- possible time dependent analysis to get γ : $B_s^0 \to K^+K^-$ and $B_d^0 \to \pi^+\pi^-$ using their U-spin symmetry but: U-spin breaking
- can include B⁰_s → K⁰_sK⁰_s branching fraction to measure γ and U-spin breaking at the same time

- first observations and branching ratios
- $\mathcal{B}(B_s^0 \to K_s^0 K_s^0)$ for measurement of CKM-angle γ :

Phys. Lett. B 459 (1999) 306 and Phys. Rev. D 65 (2002) 113008

- possible time dependent analysis to get γ : $B_s^0 \to K^+K^-$ and $B_d^0 \to \pi^+\pi^-$ using their U-spin symmetry but: U-spin breaking
- can include B⁰_s → K⁰_sK⁰_s branching fraction to measure γ and U-spin breaking at the same time
- B_d^0 branching fractions and *CP* parameters help predicting phase of $B_s^0 \to K^{(*)0} \bar{K}^{(*)0}$ in interference of decay and mixing in SM, very small

PRL 100 (2008) 031802

- first observations and branching ratios
- $\mathcal{B}(B_s^0 \to K_s^0 K_s^0)$ for measurement of CKM-angle γ :

Phys. Lett. B 459 (1999) 306 and Phys. Rev. D 65 (2002) 113008

- possible time dependent analysis to get γ : $B_s^0 \to K^+K^-$ and $B_d^0 \to \pi^+\pi^-$ using their U-spin symmetry but: U-spin breaking
- can include B⁰_s → K⁰_sK⁰_s branching fraction to measure γ and U-spin breaking at the same time

• B_d^0 branching fractions and *CP* parameters help predicting phase of $B_s^0 \to K^{(*)0} \bar{K}^{(*)0}$ in interference of decay and mixing in SM, very small

PRL 100 (2008) 031802

• $B^0_d
ightarrow K^{(*)0} ar{K}^{(*)0}$ phases well predicted by SM

(e.g., Eur. Phys. J. C 38 (2004) 251)

- first observations and branching ratios
- $\mathcal{B}(B_s^0 \to K_s^0 K_s^0)$ for measurement of CKM-angle γ :

Phys. Lett. B 459 (1999) 306 and Phys. Rev. D 65 (2002) 113008

- possible time dependent analysis to get γ : $B_s^0 \to K^+K^-$ and $B_d^0 \to \pi^+\pi^-$ using their U-spin symmetry but: U-spin breaking
- can include B⁰_s → K⁰_sK⁰_s branching fraction to measure γ and U-spin breaking at the same time

• B_d^0 branching fractions and *CP* parameters help predicting phase of $B_s^0 \to K^{(*)0} \bar{K}^{(*)0}$ in interference of decay and mixing in SM, very small

PRL 100 (2008) 031802

•
$$B^0_d
ightarrow K^{(*)0} ar{K}^{(*)0}$$
 phases well predicted by SM

(e.g., Eur. Phys. J. C 38 (2004) 251)

• \Rightarrow $B_{s(d)}$ time dependent asymmetry: (almost) null test for SM

- first observations and branching ratios
- $\mathcal{B}(B_s^0 \to K_s^0 K_s^0)$ for measurement of CKM-angle γ :

Phys. Lett. B 459 (1999) 306 and Phys. Rev. D 65 (2002) 113008

- possible time dependent analysis to get γ : $B_s^0 \to K^+K^-$ and $B_d^0 \to \pi^+\pi^-$ using their U-spin symmetry but: U-spin breaking
- can include B⁰_s → K⁰_sK⁰_s branching fraction to measure γ and U-spin breaking at the same time

• B_d^0 branching fractions and *CP* parameters help predicting phase of $B_s^0 \to K^{(*)0} \bar{K}^{(*)0}$ in interference of decay and mixing in SM, very small

PRL 100 (2008) 031802

•
$$B^0_d
ightarrow K^{(*)0} ar{K}^{(*)0}$$
 phases well predicted by SN

(e.g., Eur. Phys. J. C 38 (2004) 251)

- \Rightarrow $B_{s(d)}$ time dependent asymmetry: (almost) null test for SM
- $D^0 \rightarrow K^{(*)0} \bar{K}^{(*)0}$ time integrated CP violation e.g., $D^0 \rightarrow K_s^0 K_s^0$ could be O(1 %) in SM, enhanced in NP

(Phys. Rev. D87 (2013) 014024)

CP violation measurements

- $\mathcal{B}(B^0_s \to K^0_s K^0_s)$ (see previous slide)
- $B_s^0/B_d^0
 ightarrow K^{*0} \bar{K}^{*0}$, time dependent, tagged
 - vector-vector final state
 - no CP eigenstate, spin eigenstates are CP eigenstates
- B⁰_s → K⁰_sK⁰_s, time dependent, tagged: issue: vertex resolution – maybe possible at LHCb

CP violation measurements

- $\mathcal{B}(B^0_s o K^0_s K^0_s)$ (see previous slide)
- $B^0_s/B^0_d
 ightarrow K^{*0} ar{K}^{*0}$, time dependent, tagged
 - vector-vector final state
 - no CP eigenstate, spin eigenstates are CP eigenstates
- B⁰_s → K⁰_sK⁰_s, time dependent, tagged: issue: vertex resolution – maybe possible at LHCb
- $B_s^0/B_d^0 \to K_s^0 K^{*0}, B_s^0/B_d^0 \to K_s^0 \overline{K}^{*0}$ time dependent, tagged:
 - possible at LHCb
 - no spin decomposition needed
 - no CP eigenstate, CPV measurement possible due to similar decay rates
 - (e.g., PRL 100 (2008) 031802 and references therein)
- *D*⁰ decays: tagged, time integrated measurement
 - \rightarrow direct CPV (\mathcal{A}^{dir}) slow D^0 oscillation yields the cosine term only

Outline

Introduction

2 Decays and physics potential

3 $\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0})$ and its polarization measured at LHCb

- 4 Expected yields at LHCb
- 5 Conclusions

$B_s^0 o K^{*0} \bar{K}^{*0}$ branching fraction measurement

- first observation with 35 pb⁻¹ of 2010 data
- very good signal to background ratio
- $K^*(1430)$ component in ±150 MeV window around K^{*0} mass < 12 %

 $\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0}) = (2.81 \pm 0.46(\text{stat.}) \pm 0.45(\text{syst.}) \pm 0.34(\mathit{f_s}/\mathit{f_d})) \cdot 10^{-5}$

Phys. Lett. B709 (2012) 50 (arXiv:1111.4183)

$B^0_s ightarrow K^{*0} ar{K}^{*0}$ polarization measurement

- pseudoscalar decay into two vector particles: three polarization amplitudes A_L, A_{||} (CP-even), A_⊥ (CP-odd)
- untagged, time integrated angular fit to helicity angles

$$f_L = \frac{|A_L|^2}{|A_L|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} = 0.31 \pm 0.12 \text{(stat.)} \pm 0.04 \text{(syst.)}$$

• remarkable: difference to its U-spin partner $B_d^0 \rightarrow K^{*0} \bar{K}^{*0}$, BaBar: $f_L = 0.8 \pm 0.12$ (stat.) ± 0.04 (syst.) (Phys. Rev. Lett. 100 (2008) 081801)

Outline

Introduction

2 Decays and physics potential

3 ${\cal B}(B^0_s o K^{*0} ar K^{*0})$ and its polarization measured at LHCb

- Expected yields at LHCb
- 5 Conclusions

Estimates

Estimates: expected reconstructed yields for 3 fb⁻¹ (current data)

- for $B^0_s o K^{*0} \bar{K}^{*0}$ directly extrapolate from 35 pb⁻¹
- for $D^0 \to K^0_s K^0_s$ use LHCb yields from work in progress

200 entries / 3.92 MeV HCb work in progress entries / 0.39 MeV ICb work in progress 100 180 160 140 120 100 80 60 40 20 20 1850 1900 1950 140 145 150 155 1800 D⁰ mass [MeV] D^{*+} mass - D⁰ mass [MeV]

Tagged $D^0 \rightarrow K^0_s K^0_s$ in part of 2012 data

3_{NuPhB 675} (2003) 333

⁴IEEE (2010) 1155; J. of Phys.: Conf. Ser. 331 (2011) 032023

Estimates

Estimates: expected reconstructed yields for 3 fb^{-1} (current data)

- for $B^0_s
 ightarrow K^{*0} ar{K}^{*0}$ directly extrapolate from 35 pb $^{-1}$
- $\bullet~$ for ${\it D}^{0} \rightarrow {\it K}^{0}_{s}{\it K}^{0}_{s}$ use LHCb yields from work in progress
- for others take branching ratio from theory³ (experiment)
- based on MC study using the LHCb MC setup⁴
- take trigger and reconstruction efficiency from MC
- is yield enough for time dependent tagged analysis? (taking tagging power into account)

Mind: MC for 2011, new trigger with higher K_s^0 yield in 2012 \Rightarrow numbers are conservative for modes containing a K_s^0

³NuPhB 675 (2003) 333

⁴IEEE (2010) 1155; J. of Phys.: Conf. Ser. 331 (2011) 032023

Expectations for 3 fb⁻¹ and beyond

decay	$O(N_{exp})$	time dep., tagged	time dep. tagged
	3 fb ⁻¹	current data	upgrade
$B^0_s o K^{*0} ar{K}^{*0}$	4500	YES	YES
$B^0_s ightarrow K^0_s K^{st 0}$	100	no	YES
$B^0_s ightarrow K^0_s ar{K}^{st 0}$	100	no	YES
$B^0_s ightarrow K^0_s K^0_s$	100	no	following slides
$B^0_d ightarrow K^{*0} ar{K}^{*0}$	300	no	YES
$B^0_d ightarrow K^0_{ m s} K^{st 0}$	30	no	possibly
$B^0_d o K^0_{ m s} ar K^{st 0}$	30	no	possibly
$B^0_d ightarrow K^0_{ m s} K^0_{ m s}$	15	no	no
$D^0 ightarrow K^0_{ m s} K^0_{ m s}$	1000†	time integrated	time integrated

Other D^0 decay modes: same order of magnitude as $D^0 \to K^0_s K^0_s$ [†]tagged, untagged number: 5000

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion

MVA to select $B^0_s o K^0_s K^0_s$

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion
- use MVA proposed in Britsch et al., PoS(ACAT2010)047 and PoS(ACAT08)086: rule based

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion
- use MVA proposed in Britsch et al., PoS(ACAT2010)047 and PoS(ACAT08)086: rule based
- method includes MVA-preselections
 - ightarrow fits perfectly LHCb analysis model requiring central preselection

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion
- use MVA proposed in Britsch et al., PoS(ACAT2010)047 and PoS(ACAT08)086: rule based
- method includes MVA-preselections
 - \rightarrow fits perfectly LHCb analysis model requiring central preselection
- test on $D^0 \rightarrow K^-\pi^+$ whithout using RICH information: training done on 2006 MC, never redone!

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion
- use MVA proposed in Britsch et al., PoS(ACAT2010)047 and PoS(ACAT08)086: rule based
- method includes MVA-preselections
 - \rightarrow fits perfectly LHCb analysis model requiring central preselection
- test on $D^0 \rightarrow K^-\pi^+$ whithout using RICH information: training done on 2006 MC, never redone!
- one of the first selections to give open charm peak at LHCb!

MVA to select $B^0_s o K^0_s K^0_s$

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion
- use MVA proposed in Britsch et al., PoS(ACAT2010)047 and PoS(ACAT08)086: rule based
- method includes MVA-preselections
 - ightarrow fits perfectly LHCb analysis model requiring central preselection
- test on $D^0 \rightarrow K^-\pi^+$ whithout using RICH information: training done on 2006 MC, never redone!
- one of the first selections to give open charm peak at LHCb!

same selection quality as cuts based analysis using powerful RICH cuts

MVA to select $B^0_s o K^0_s K^0_s$

- expect huge combinatorial background
 - RICH does not help much with pions, which are legion
- use MVA proposed in Britsch et al., PoS(ACAT2010)047 and PoS(ACAT08)086: rule based
- method includes MVA-preselections
 - \rightarrow fits perfectly LHCb analysis model requiring central preselection
- test on $D^0 \rightarrow K^- \pi^+$ whithout using RICH information: training done on 2006 MC, never redone!
- one of the first selections to give open charm peak at LHCb!

same selection quality as cuts based analysis using powerful RICH cuts

• \rightarrow very robust and powerful algorithm! • $B_s^0/B_d^0 \rightarrow K_s^0 K_s^0$: central preselection implemented and running

$B^0_s ightarrow K^0_s K^0_s$ time dependent measurement

- use only highest quality category K⁰_s
- upgrade, with tagging efficiency: effectively O(10) candidates
- ⇒ enough? But mind comment about trigger
- an untagged analysis also an option
- what about the time resolution?

$B^0_s ightarrow K^0_s K^0_s$ time dependent measurement

- use only highest quality category K⁰_s
- upgrade, with tagging efficiency: effectively O(10) candidates
- ⇒ enough? But mind comment about trigger
- an untagged analysis also an option
- what about the time resolution?
- look at $D^0 o K^0_s K^0_s$ to get the error on the decay length σ_{ct}
- find time resolution: 85 fs $\approx \frac{1}{4} \cdot T_{mix}$

- B_s^0 has higher mass \rightarrow larger opening angle \rightarrow smaller σ_{ct}
- \Rightarrow should be enough to do $B_s^0 \rightarrow K_s^0 K_s^0$ time dependent

Outline

Introduction

- 2 Decays and physics potential
- ③ $\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0})$ and its polarization measured at LHCb
 - 4 Expected yields at LHCb
- 5 Conclusions

- status and potential of B & D meson decays to two neutral kaons at LHCb
- first observation and f_L of $B^0_s \to K^{*0} \bar{K}^{*0}$ with 2010 data
- with the current data the following should be possible
 - (first) observation and branching ratios for all decay modes
 - first *CP* measurements are possible for $B^0_s o K^{*0} ar{K}^{*0}$
 - world best CP measurements for all these D⁰ modes
- with the upgrade
 - time dependent *CP*V measurements for $B^0_s o K^0_s K^{*0}$, $K^0_s \bar{K}^{*0}$
 - though tough, time dependent CP measurement of $B^0_s o K^0_s K^0_s$ within reach
- this will increase our knowledge of $\mathcal{A}_{D^0 \to K^{(*)0}\bar{K}^{(*)0}}^{\text{dir}}$, β_s , and γ
- more important: good potential for the observation of NP

Start backup slides

Backup

Outline

Track types

- L long tracks: track segment in Vertex Locator (VELO)
- D downstream tracks: no track segment in VELO
- $K_{\rm s}^0$: typically two tracks of same kind: $K_{\rm s}^0$ LL or $K_{\rm s}^0$ DD
- of course $K_{s}^{0}LL$ are of higher quality

Outline

Track types at LHCb

What are rule learner?

- supervised (i.e., learning from a test sample) classifier
- classifying events according to a rule set, *i.e.*, a collection of "if...then..." rules.

Example for a rule set:

```
(IPpi >= 1.039316) and (DoCA <= 0.307358) and
(IP <= 0.270767) and (IPp >= 0.800645)
=> class=Lambda
```

```
(IPpi >= 0.637403) and (DoCA <= 0.159043) and
(IP <= 0.12081) and (ptpi >= 149.2332) and
(IP >= 0.003371)
=> class=Lambda
```

=> class=BG

