

Astroparticle physics with IceCube

Sebastian Böser

Frühjahrstagung der Deutschen Physikalischen Gesellschaft Dresden 7. März 2013

The cosmic ray – gamma – neutrino link

Propagation

- charged cosmic rays
 - → deflected in magnetic fields
- photons / neutrinos

DH

→ pointing back to source

Source interactions:

$$p(p/\gamma) \to \pi^{\pm}/\pi^{0} + \text{anything}$$

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}$$

$$\to e^{\pm} + \nu_{e}/\bar{\nu}_{e} + \nu_{\mu}/\bar{\nu}_{\mu}$$

$$\pi^{0} \to \gamma + \gamma$$

Flavour ratio

• 1:2:0 \rightarrow 1:1:1 smoothed out by oscillations

Neutrino detection principle

Observe the charged *secondaries* via Cherenkov radiation detected by a 3D array of optical sensors

Need a huge volume (km³) of an optically transparent detector material

Antarctic ice is the optically most transparent natural solid known (absorption lengths up to 200+ m)

 $\boldsymbol{\mathcal{V}}$

U

The IceCube observatory

Performance

Installation

- 5484 optical modules installed
 - → 128 DOMs failed (during installation)
 - → 50% fixed again
- expected statistical lifetime
 - → 14.000 years

Data-taking

- average detector uptime
 → 98% over 5 years
- used for data analysis
 - → 91% over 5 years

Very stable operation!

universit

Detection method

universitätbonn

Event signatures

Tracks

- $\nu_{\mu} + N \rightarrow \mu + X$
- pointing resolution $\sigma_{\Psi} \sim 1^{\circ}$

Cascades

- $\nu_e + N \ \twoheadrightarrow \ e \ + X$
- $\nu_f \, + \, N \, \twoheadrightarrow \, \nu_f \, + \, X$
- energy resolution $\sigma_E \sim 0.1 \log_{10}(E)$

As well as...

- muon bundles (cosmic rays)
- double-bang (v_{τ})
- exotic states (monopoles,...)

Background

Background

Point sources

v_{μ} energy and pointing resolution

Dataset

 lifetime 1039 days (IC40+IC59+IC79)

- 108,317 up-going
- 146,018 down-going

Likelihood analysis

• signal term: angular and energy pdf

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$$

background term
 →pdf from data in zenith band

Significance skymap

Likelihood term

$$\mathcal{L}(n_s, \gamma) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S_i(\gamma) + (1 - \frac{n_s}{N}) \mathcal{B}_i \right)$$

Test statistics
$$\log \lambda = \left(\frac{\mathcal{L}(\hat{\gamma}, \hat{n_s})}{\mathcal{L}(n_s = 0)} \right)$$
 chosen to maximize likelihood

Hottest spot

- RA: 34.25°
- DEC: 2.75°
- -log₁₀(p) = 4.707
 - n_s = 23.07, γ = 2.35

→no close-by candidates

universitätbonn

Right ascension scrambling

- 2000 random datasets
 - → 57% have equal or larger max. p-value

sboeser@physik.uni-bonn.de

Transient sources

Gamma ray bursts

Fireball model (long GRBs)

- collapse of massive star
- ultra-relativistic jets
- shock front collision
 - →PeV neutrino emission
- total energy release ~10⁵² ergs
 - →good candidate for extragalactic cosmic ray flux

IceCube GRB analysis

- 215 GRBs from GCN
- coincidence analysis
 - → time window ($\Delta T \approx 0.1$ -100s)
 - →direction ($\Delta \Psi_{IceCube} \approx 1^{\circ}$)
- per-alert emission model
 - 5.2 events expected
 - no events observed

→ starting to constrain GRB models

universitätbonn

Follow-up program

Idea

- trigger follow-up observation by neutrinos in IceCube
 - → online neutrino analysis

Online alerts

- multiplet trigger $N_{\nu} \ge 2$, $\Delta \Psi \ge 4^{\circ}$, $\Delta t \le 100s$ separation
 - → likelihood analysis

Follow-up program

- optical: ROTSE, PTF
 - → first results
- X-rays: SWIFT
- γ-rays: MAGIC, VERITAS

northern hemisphere institute

SWIF1

Iridium

universität onn transient event (SN,GRB,...)

IceCube

Optical follow-up – first results

Supernova jet model

 Are there GRB – like jets in core-collapse SNe?

[Ando & Beacom (PRL 95/2005)]

First year of optical follow-up

- 34 alerts send to ROTSE
- 0 SN counterparts observed

[Abbasi et al., A&A 2012] -3.5 log₁₀(p/(Mpc⁻³ y⁻¹)) 100% -4.5 10% Γ=6 Γ=8 Γ=10 -5.5 1% 52 52.5 50.5 51 51.5 53 50

First limit on jets in CCSNe

→ less than 4.2% of CCSNe have a GRB-like jet with $\Gamma \ge 10$

log₁₀(E_{iet}[erg])

Diffuse sources

Diffuse v_{μ} flux – limits

Experimental upper limits on the diffuse flux of muon neutrinos from sources with Φ ~ E^{-2} energy spectrum

→ can we improve beyond this?

Diffuse ve searches

Advantages

- good energy reconstruction
- significantly less background
 - → no atmospheric e[±]
 - \rightarrow less atmospheric v_e

Challenges

- $\bullet\,$ stochastic energy loss from atm. μ
- limited directional reconstruction

Analysis strategies

- low energies
 - →veto around DeepCore
- middle energies
 - →signature / quality cuts
- highest energies
 - →only cut on energy

universität**bon**

Low-energy cascades

Atmospheric electron neutrinos

- conventional flux
 - v_e -flux = ~10⁻² v_{μ} -flux
- prompt flux
 - decay of charmed mesons (e.g D^{\pm}, D_0, Λ_c)
 - → probe hadronic interaction models

Analysis strategy

- DeepCore
 - →denser module spacing
 - →lower trigger threshold
 - →in clearest part of the ice
- IceCube
 - \rightarrow use as surrounding veto for atm. μ

Atmospheric v_e flux – measurement

First observation of v_e

- statistically significant (1029 evts, ~50% sig, ~50% bgd)
- substantial backgrounds remaining
 - \rightarrow not (yet) able to discriminate flux models
 - → not (yet) sensitive to prompt atm. neutrino flux

universität **bon**

Medium energy cascades

Analysis strategy

• select "cascade-like" events

Quality parameters

- tensor of inertia
 - →round vs. elongated
- fill ratio
 - → hits everywhere where expected
- vertex stability
 - →early and late hits from same origin

• ..

Final selection

- Boosted decision tree
 - → separately optimized for two different energy regions

Search for neutrino-induced cascades

Interpretation

- statistical fluctuation ?
- enhanced prompt flux ??
- astrophysical neutrinos ???

Events E ≤ 100 TeV

- consistent with expectations
 - \rightarrow conventional v_{e+}v_µ
 - → atmospheric µ

Events E ≥ 100 TeV

- observed: 3(+1) events
- expected: 0.36 events

→ significance: 2.75σ

Highest energy diffuse search

EHE diffuse search – results

EHE diffuse search – results

Bert

(1.1±0.2) PeV

Detailed inspection

indication that both events are down-going

EHE model expectations

Interpretation?

- above prompt expectation
- below Glashow resonance energy
 v_e + e[±] → W[±]
- too low in energy for GZK models
- spectrum not very hard
 - \rightarrow for E⁻² expect

8-9 events

Future searches

Combine advantages

- Explicit contained search (as for low energies)
 → atmospheric muon veto
- Sensitive to all flavours
- Optimized for 1PeV region
 → factor 3 gain in sensitivity

Stay tuned for results!

Summary

Point-Sources

- strict upper limits on steady sources.
- limit on transient sources start to rule out models
- enhance transient search with follow-ups

Diffuse flux

- first measurement of conventional ve flux
- small excess of cascade-like events in 0.1-1 PeV range
- →two independent analyses
- →we may be on the verge of discovery

IceCube will open a new window to the universe!