TT 60: Correlated Electrons: f-Electron Systems

Time: Thursday 9:30-13:15

TT 60.1 Thu 9:30 HSZ 201

Fermi-surface evolution in the $Nd_x Ce_{1-x} CoIn_5$ doping series — •J. KLOTZ^{1,2}, E. GREEN¹, K. GÖTZE¹, C. PETROVIC³, I. SHEIKHIN⁴, J.-H. PARK⁵, and J. WOSNITZA^{1,2} — ¹Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany — ²Institut für Festkörperphysik, TU Dresden, Germany — ³Brookhaven National Laboratory, Brookhaven, USA — ⁴Laboratoire National des Champs Magnétiques Intenses, Grenoble, France — ⁵National High Magnetic Field Laboratory, Tallahassee, USA

CeCoIn₅ is one of the prime examples for heavy-fermion (HF) superconductivity [1]. However, superconductivity vanishes upon Nd doping on the Ce site [2]. Since there are several theory studies suggesting a relation of the Fermi-surface (FS) geometry and superconductivity, e. g. [3], the knowledge of the Fermi surface is of vital importance. Here, we present quantum-oscillation data of Nd_xCe_{1-x}CoIn₅ obtained using a rotatable torque magnetometer in fields up to 35 T and temperatures down to 50 mK. In combination with band-structure calculations, our data reveal only a subtle change in the cylindrical FS sheet of CeCoIn₅, but a strong change in the effective-mass renormalization.

 C. Petrovic, P. G. Pagliuso *et al.* J. Phys.: Condens. Matter 13, L337 (2001).

[2] R. Hu, Y. Lee et al. Phys. Rev. B 77, 165129 (2008).

[3] T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn. 59, 2905 (1990).

TT 60.2 Thu 9:45 HSZ 201

Investigation of the energy scales in SmB_6 by scanning tunneling microscopy — •LIN JIAO¹, SAHANA RÖSSLER¹, DAE-JEONG KIM², LIU HAO TJENG¹, ZACHARY FISK², FRANK STEGLICH¹, and STEFFEN WIRTH¹ — ¹Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany — ²Department of Physics, University of California, Irvine, California, USA

SmB₆ has been proposed as a topological Kondo insulator, which possesses topologically protected nontrivial surface states inside the bulk hybridization gap. By conducting scanning tunneling microscopy and spectroscopy, we are able to perform local measurements on well identified non-reconstructed (001) surfaces. Above ~7 K and up to 80 K, the electronic states in SmB₆ are governed by the Kondo effect of the bulk [1]. At temperatures as low as 0.35 K, we observed several wellresolved states within the hybridization gap (± 20 meV) of SmB₆ for the first time [2]. These states possess sharp peak-like features with a strong temperature dependence below 7 K, which indicates an additional energy scale at the surface of SmB₆, in line with a suppression of the Kondo effect at the surface. These high resolution data offer the opportunity to directly compare our spectroscopy with band structure calculations, and analyze their surface or bulk origin, which may help reconciling many contradicting assertions in this material.

[1] S. Rößler et al., Proc. Natl. Acad. Sci. USA 111, 4798 (2014)

[2] L. Jiao *et al.*, Nat. Commun. 7, 13762 (2016)

TT 60.3 Thu 10:00 HSZ 201

Subsurface electronic structure of the mixed-valent SmB₆ — •Chul-Hee Min¹, Peter Lutz¹, Katharina Treiber¹, Thiago R.F. Peixoto¹, Hendrik Bentmann¹, Boyoun Kang², Beongki Cho², and Friedrich Reinert¹ — ¹Universität Würzburg, EP7, Würzburg, Germany — ²School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea

Strongly correlated topological insulators are expected to show drastically distinct phenomena near the surface region ^{1,2} because the hybridization strength V_{cf} of bulk and surface can be different ³. We present an investigation on the probing depth dependence of 4f states and 3d core-levels in samarium hexaboride (SmB₆) to identify the unique subsurface electronic properties. From both angle- and photon energy-dependent studies, we estimate the thickness of the subsurface layer, which shows different Sm valence from the bulk one. Based on our estimation, we discuss about the surface, subsurface and bulk contributions in the 4f spectra. Our results indicate that at least twocomponent are present in the soft x-ray 4f spectra, which brings the size of the bulk gap of SmB₆ into question.

[1] Y. Xu, et al., Phys. Rev. Lett. 116, 246403 (2016).

Location: HSZ 201

[2] O. Erten, et al. Phys. Rev. Lett. 116, 046403 (2016).
[3] J. Allen, Phil. Mag. 96, 3227 (2016).

TT 60.4 Thu 10:15 HSZ 201

Excitons in topological Kondo insulators - theory of thermodynamic and transport anomalies in $SmB_6 - \bullet$ JOHANNES KNOLLE and NIGEL R. COOPER - TCM Cavendish Laboratory, Univer- sity of Cambridge, UK

Kondo insulating materials lie outside the usual dichotomy of weakly versus correlated - band versus Mott - insulators. They are metallic at high temperatures but resemble band insulators at low temperatures because of the opening of an interaction induced band gap. The first discovered Kondo insulator (KI) SmB₆ has been predicted to form a topological KI (TKI) which mimics a topological insulator at low temperatures. However, since its discovery thermodynamic and transport anomalies have been observed that have defied a theoretical explanation. Enigmatic signatures of collective modes inside the charge gap are seen in specific heat, thermal transport and quantum oscillation experiments in strong magnetic fields. Here, we show that TKIs are susceptible to the formation of excitons and magneto-excitons. These charge neutral composite particles can account for long-standing anomalies in SmB₆ which is crucial for the identification of bulk topological signatures.

TT 60.5 Thu 10:30 HSZ 201 **Magnetic field dependence of spin excitations in CeB**₆ — P. Y. PORTNICHENKO¹, S. V. DEMISHEV², A. V. SEMENO², H. OHTA³, A. S. CAMERON¹, M. A. SURMACH¹, H. JANG^{4,5}, A. V. DUKHNENKO⁶, N. YU. SHITSEVALOVA⁶, V. B. FILIPOV⁶, A. SCHNEIDEWIND⁷, J. OLLIVIER⁸, A. PODLESNYAK⁹, and •D. S. INOSOV¹ — ¹TU Dresden, Germany — ²General Physics Institute, Moscow — ³Kobe University, Japan — ⁴MPI für Festkörperphysik, Stuttgart — ⁵National Accelerator Lab, Stanford, USA — ⁶Inst. for Problems of Material Sciences, Kiev, Ukraine — ⁷Forschungszentrum Jülich, Germany — ⁸ILL, Grenoble, France — ⁹SNS, Oak Ridge, USA

We employ inelastic neutron scattering (INS) to study the field dependence of spin fluctuations in CeB₆. The exciton shows no field splitting in marked contrast to CeCoIn₅. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a nonmonotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.

TT 60.6 Thu 10:45 HSZ 201 The quartet ground state in CeB₆: an inelastic x-ray scattering study — •MARTIN SUNDERMANN^{1,2}, KAI CHEN¹, HASAN YAVAŞ³, ZACHARY FISK⁴, MAURITS HAVERKORT^{2,5}, LIU HAO TJENG², and ANDREA SEVERING^{1,2} — ¹University of Cologne, Institute of Physics II, 50937 Cologne, Germany — ²Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany — ³PETRA III, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany — ⁴Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA — ⁵present address: Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany

We investigated the ground state symmetry of the cubic hidden order compound CeB₆ by means of core level non-resonant inelastic x-ray scattering (NIXS). The information is obtained from the directional dependence of the scattering function that arises from higher than dipole transitions. Our new method confirms that the paramagnetic ground state is well described using a localized crystal-field model assuming a Γ_8 quartet ground state.

TT 60.7 Thu 11:00 HSZ 201 Hard axis ordering in ferromagnetic YbNiSn — •DMITRY SOKOLOV^{1,2}, ANDREW HUXLEY², and FRANZ DEMMEL³ — ¹MPI, CPfS, Dresden, Germany — ²The University of Edinburgh, UK — ³ISIS Facility, Rutherford Appleton Laboratory, Chilton, UK

We report on magnetic field induced critical points in ferromagnetic heavy fermion YbNiSn. We show via direct measurements of the static and dynamic magnetic susceptibility and also via bulk measurements that the ferromagnetism can be suppressed to zero temperature by a modest magnetic field of 1.7 T. Our neutron diffraction find a canted ferromagnetism in YbNiSn, in which the orientation of the ordered moment can be flipped by the magnetic field of 1 T. Above the field of 1 T the ordered moment attains a much higher value indicating a true easy axis. Our inelastic neutron scattering measurements find a gapped spin wave excitation, which softens at the field induced moment-reorientation transition at 1 T. As the magnetic field approaches 1.7 T transition into a fully polarized state the excitation loses its intensity and disappears. We discuss the origin of the hardaxis ordering and the soft mode in this material.

15 min. break.

TT 60.8 Thu 11:30 HSZ 201

Direct bulk sensitive probe of 5f symmetry in URu₂Si₂ — Martin Sundermann¹, Maurits W Haverkort^{2,4}, Mark Golden³, Yinkai Huang³, Anne de Visser³, Peter Thalmeier², LIU HAO TJENG², and \bullet ANDREA SEVERING¹ — ¹University of Cologne, Institute of Physics II, 50937 Cologne, Germany — ²Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany — ³Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ⁴present address: Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany

The order parameter of the second-order phase transition into a hidden order phase in URu₂Si₂ is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low lying local electronic *f*-states. Here we present results of a novel spectroscopy, namely core-level non-resonant inelastic x-ray scattering (NIXS). This method allows for the measurement of local high-multipole excitations and it is bulk sensitive. The observed anisotropy of the scattering function unambiguously shows that the 5f ground state wave function is composed mainly of the Γ_1 with majority $J_z = |4\rangle + |-4\rangle$ and/or Γ_2 singlet states. The incomplete dichroism indicates the superposition of quantum states necessary for constructing the HO state with the breaking of the fourfold symmetry.

TT 60.9 Thu 11:45 HSZ 201

Field induced Lifshitz transition in UPt₂Si₂: Fermi surface under extreme conditions — DIRK Schulze $GRACHTRUP^1$, •Nico Steinki¹, Stefan Süllow¹, Zübeyir Cakir², Gertrud Zwicknagl², Yuriy Krupko³, Marcelo Jaime⁴, and John A. Mydosh⁵ — ¹Institut für Physik der Kondensierten Materie, TU Braunschweig, D-38106 Braunschweig, Germany — ²Institut für Mathematische Physik, TU Braunschweig, D-38106 Braunschweig, Germany - ³Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), CNRS, UGA, 38042 Grenoble, France — ⁴National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA — 5 Kamerlingh Onnes Laboratory, Leiden University, 2300RA Leiden, The Netherlands

We have measured Hall effect, magnetotransport and magnetostriction on the field induced phases of single crystalline UPt₂Si₂ in magnetic fields up to 60 T at temperatures down to 50 mK. For the magnetic field applied along the c axis we observe strong changes in the Hall effect at the phase boundaries. From a comparison to band structure calculations utilizing the concept of a dual nature of the uranium 5felectrons, we find evidence for field induced topological changes of the Fermi surface due to at least one Lifshitz transition. Furthermore, we find a unique history dependence of the magnetotransport and magnetostriction data, indicating that the Lifshitz type transition is of a discontinuous nature, as predicted for interacting electron systems.

TT 60.10 Thu 12:00 HSZ 201

Microwave response of $CeCu_2Si_2 - \bullet Markus$ Thiemann¹, Mar-TIN DRESSEL¹, SILVIA SEIRO², CHRISTOPH GEIBEL², NICHOLAS LEE-HONE³, DAVID BROUN^{3,4}, and MARC SCHEFFLER¹ — ¹1. Physikalisches Institut, Universität Stuttgart, Germany — 2 Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany — ³Department of Physics, Simon Fraser University, Burnaby, Canada — ⁴Canadian Institute for Advanced Research, Toronto, Canada

CeCu₂Si₂ is a heavy fermion compound, exhibiting a onset of super-

conductivity ($T_c \approx 0.6$ K) at a quantum critical point. Although superconductivity in this compound was discoverd over 30 years ago, its origin and the symmetry of the order parameter still remain unclear. While it was long believed that the order parameter had a d-symmetry, supported by neutron scattering experiments and NQR, recent specific heat measurements indicate fully gapped multigap superconductivity. Since the relevant energy scales of this compound are in the μeV regime, microwave measurements are an adequate technique to reveal intrinsic electronic properties of this system.

We performed microwave resonator measurements in a frequency and temperature range from 2.5GHz to 20GHz and 0.1K to 10K. This enabled us to determine the complex optical conductivity in the metallic as well as the superconducting state. In the metallic state, above 0.6K we see signs of the heavy fermion state arising, pushing the scattering rate towards our spectral range. In the superconducting state the absense of a coherence peak and the temperature dependence of the superfluid density point towards unconventional superconductivity.

TT 60.11 Thu 12:15 HSZ 201

Ising-type Magnetic Anisotropy in $CePd_2As_2 - \bullet M$. O. $Ajeesh^1, T. Shang^2, W. B. Jiang^2, W. Xie^2, R. D. dos Reis^1, M. Smidman^2, C. Geibel¹, H. Q. Yuan², and M. Nicklas¹ — ¹Max$ Planck Institute for Chemical Physics of Solids, Dresden, Germany -²Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou, China

We studied the magnetic, thermal, and electrical transport properties of CePd₂As₂. X-ray diffraction confirmed the tetragonal ThCr₂Si₂type structure and the high-quality of the single crystals. Magnetization and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystal electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large c-axis moment and a small in-plane moment at low temperature. Accordingly, we observe a uniaxial antiferromagnetic (AFM) ordering at a transition temperature of $T_N \approx 15 \text{K}$ with the crystallographic cdirection being the magnetic easy axis. The magnetic entropy gain up to T_N reaches almost Rln2 indicating localized 4f-electron magnetism without significant Kondo-type interactions. Below T_N , the application of a magnetic field along the c-axis induces a metamagnetic transition from the AFM to a field-polarized phase at $B_C \approx 1$ T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM. A detailed crystal electric field analysis based on the magnetic-susceptibility data indicates an almost pure $|\pm 5/2\rangle$ CEF ground-state doublet with the dominantly $|\pm 3/2\rangle$ and the $|\pm 1/2\rangle$ doublets at 290K and 330K, respectively.

TT 60.12 Thu 12:30 HSZ 201 Stress - Temperature Phase Diagram of Antiferromagnetic order in CeAuSb₂ Under Uniaxial Pressure — •JOONBUM PARK^{1,2}, HIDEAKI SAKAI³, ANDREW P. MACKENZIE^{1,4}, and CLIF-FORD W. HICKS¹ — ¹Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, 01187 Dresden, Germany — ²Max Planck POSTECH Center for Complex Phase Materials, Max Planck POSTECH/Korea Research Initiative (MPK), Gyeongbuk 376-73, Korea — ³Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan — ⁴Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom

We present results of the electrical transport measurements under uniaxial pressure on the antiferromagnet CeAuSb₂. In the unstrained system, the resistivity along [100] shows a sharp drop at the Néel temperature ($T_{\rm N} \approx 6.5$ K), suggesting a first order transition. With compression along [100] by ≈ 0.3 %, the transition splits into two continuous transitions, at temperatures T_1 and T_2 . T_1 is fully suppressed at a compression of ≈ 0.6 %, and in pressure ramps at low temperature this transition is a sharp cusp with hysteresis, indicating a first-order transition. T_2 , on the other hand, rises continuously with increasing compression, reaching 9 K at 1.2 % compression. At present, the nature of the strain-induced phase between T_1 and T_2 is not clear.

TT 60.13 Thu 12:45 HSZ 201 Incommensurate short-range multipolar order parameter of phase II in $Ce_3Pd_{20}Si_6$ — •Pavlo Y. Portnichenko¹, Silke Paschen², Andrey Prokofiev², Matthias Vojta³, Alistair S. CAMERON¹, JEAN-MICHEL MIGNOT⁴, ALEXANDRE IVANOV⁵, and Dмутко S. Inosov
1- $^1\mathrm{IFP},$ TU Dresden, Germany- $^2\mathrm{Vienna}$ Univ. of Technology, Austria — ³ITP, TU Dresden, Germany -⁴LLB, France — ⁵ILL, France

The clathrate compound $Ce_3Pd_{20}Si_6$ is a heavy-fermion metal that exhibits magnetically hidden order at low temperatures. Reputedly, this exotic type of magnetic ground state, known as "phase II", could be associated with the ordering of $\operatorname{Ce} 4f$ quadrupolar moments. In contrast to conventional (dipolar) order, it has vanishing Bragg intensity in zero magnetic field and, as a result, has escaped direct observation by neutron scattering until now. Here we report the observation of diffuse magnetic neutron scattering induced by an application of magnetic field along either the $[1\overline{10}]$ or the [001] direction within phase II. The broad elastic magnetic signal that surrounds the (111) structural Bragg peak can be attributed to a short-range G-type antiferromagnetic arrangement of field-induced dipoles modulated by the underlying multipolar order on the simple-cubic sublattice of Ce ions occupying the 8c Wyckoff site. In addition, for magnetic fields applied along the [001] direction, the diffuse magnetic peaks in Ce₃Pd₂₀Si₆ become incommensurate, suggesting a more complex modulated structure of the underlying multipolar order that can be continuously tuned by a magnetic field.

 $TT \ 60.14 \ Thu \ 13:00 \ HSZ \ 201$ Frustrated local moment magnetism in a metallic system: $Ce_6Ni_6P_{17} - \bullet$ Diego Franco and Christoph Geibel - MaxPlanck-Institut für Chemische Physik Fester Stoffe

Frustrated metallic systems are potentially of strong interest because the interaction between magnetic and itinerant degrees of freedom is expected to result in unusual properties. However the number of appropriate systems is extremely scarce. Because of its structure the polyphosphide $Ce_6Ni_6P_{17}$ is an attractive candidate. Ce atoms are located on the corners of octahedra, which form a body centered cubic lattice. Thus one might expect frustration within the octahedra and frustration because of the body centered arrangement of the octahedra [1]. A preliminary study provided some evidence for frustration, but presented only limited experimental results [1]. We synthesized polycrystalline samples and present magnetization, specific heat and resistivity data. Our results confirm Ce₆Ni₆P₁₇ to be a metallic, frustrated local moment system. Kondo interaction are negligible resulting in well-defined 4f local moments. Specific heat C(T)/T data evidence magnetic order at merely $T_N = 0.97$ K, with only a small anomaly at T_N compensated by a huge tail in C(T)/T extending far above T_N . The magnetic fluctuations indicated by this large tail in C(T)/T are also seen as a broad maximum in $\chi(T)$ at $T > T_N$. Thus Ce₆Ni₆P₁₇ is a very promising candidate for studying magnetic frustration in a metallic system.

[1] N. Takeda et al., J. Phys. : Conf. Series 391 (2012) 012071