HL 19 Quantum dots and wires: Optical properties II

Time: Tuesday 17:15–19:30
Room: HS 01

HL 19.1 Tue 17:15 HSZ 01

Influence of doping on the electronic and optical properties of Si nanocrystallites — **Luis Ramos1**, Elena Degolli2, Stefano Ossicini2, Jürgen Fürthmüller1, and Friedhelm Bechtold3

1Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany — 2Università di Modena e Reggio Emilia, via Fochigiani, I-42100 Reggio Emilia, Italy

Silicon nanocrystallites (NCs) have been intensively studied in the last years, since they can confine holes and electrons and circumvent the indirect-gap character of the lowest-energy optical transitions of Si bulk. Besides quantum confinement, oxidation, oxygen-related defects, [1] and doping have been investigated. Recently, an increase of the photo luminescence (PL) intensity was observed for Si NCs doped with both group-III and group-V species. Since measurements for single NCs are difficult, ab initio theoretical investigations become important to suggest dopants and to clarify the mechanisms of PL in Si NCs. Our calculations are based on the density-functional theory, the generalized-gradient approximation, the projector-approximated wave method, and the pseudopotential approximation. The electronic structure and optical absorption spectra of free-standing doped Si NCs of different sizes and shapes are investigated in simple-cubic supercells. Besides the influence of shape and size on the impurity formation energies, bond lengths, and radiative lifetimes, significant changes in the optical absorption spectra are predicted for Si NCs doped with group-V impurities.

HL 19.2 Tue 17:30 HSZ 01

Temperature dependent fluorescence quantum efficiency of cascaded energy transfer nanocrystal structures — **S. Rohrmüser1, T. Franzl2, A.L. Rogach3, and J. Feldmann4** — Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München

We present temperature dependent fluorescence studies of cascaded energy transfer (CET) structures made of CdTe nanocrystals. Funnel like band gap profiles are realized by applying layer-by-layer assembly to CdTe nanocrystals of distinct sizes. For high-energetic excitation, the CET structure comprising only one layer of red-emitting nanocrystals emits 4 times more red light than a reference sample of equal absorbance consisting of only red emitting nanocrystals, hence increasing the final excitation density by a factor of 28. To investigate the underlying process in more detail, temperature dependent and time resolved measurements have been performed. The results reveal an activation barrier involved in the energy transfer process and help to understand the long-lived feeding of the central layer.

HL 19.3 Tue 17:45 HSZ 01

Structural investigations of MBE-grown InN Nano-Whiskers — **Ratan Debnath1, Tomáš Stoka2, Ralph Meijers1, Thomas Richter1, Raffaella Calarco1, and Hans Lüthi3** — Thin Films and Interfaces (ISG1) and CNI - Centre of Nanoelectronics and Photonics and Optoelectronics, Awp, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Germany — 3Institute of Physical Chemistry, University of Hamburg, Germany

InN was grown by plasma-assisted molecular beam epitaxy (PAMBE) on Si(111) substrates under low-pressure conditions. The results reveal a strong and reproducible increase of the InN quantum structure with increasing V/Mg flow ratio. Due to the lower growth temperature of 330°C compared to the growth temperature of a GaN (130°C) growth, the whiskers showed better vertical alignment and a more pronounced 2D quantum structure. The whiskers showed a preferred c-axis orientation and their morphology was characterized by using scanning electron microscopy (SEM) and cathodoluminescence (CL). A new growth was optimized to obtain uniform columns of good crystalline quality. An optical bandgap was found in the range 0.73−0.82 eV and electron concentrations between 8 × 1017 and 6 × 1018 cm−3 were determined.

HL 19.4 Tue 18:00 HSZ 01

Storage of excitons in elongated semiconductor nanocrystals — **Robert M. Kraus1, Pavlos G. Lagoudakis1, Andrey L. Rogach2, John M. Lupton1, Jochen Feldmann3, Dmitry Talapin4, and Horst Weller5** — Photonic and Optoelectronic Components, Awp, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Germany — 1Institute of Physical Chemistry, University of Hamburg, Germany

Spherical CdSe nanocrystals capped by a CdS rod-like shell, referred to as nanorods, exhibit interesting spectral dynamics on the single particle level. [1,2] However, for the purpose of applications, the ensemble properties of nanorods are most interesting. We are especially interested in the behaviour of an ensemble of nanorods under the influence of an electric field, as this bears great relevance for future devices. We show here that by applying an electric field to an ensemble of nanorods in a vertical sample geometry a linear quantum-confined Stark shift of the order of 60 meV can be observed in the emission energy. During the application of the electric field the excitons are effectively hindered from radiative recombination and can be stored coherently for up to 100 ms. Moreover, modification of the electric field leads to a modulation in both the wavelength and the spectral width of the nanoparticle emission.

HL 19.5 Tue 18:15 HSZ 01

Electric field induced photoluminescence quenching in CdSe nanocrystal doped SiO2 on Si — **Helmut Karl Alexander Achtstein1, and Bernd Stürtzker2** — Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany

Buried CdSe nanocrystals were synthesized by sequential ion implantation of Cd and Se in 500 nm thick thermally grown SiO2 on p-doped silicon. The formation of the CdSe nanoclusters was initiated by a post-implantation thermal annealing step. Then an optically semitransparent thin Au gate electrode was evaporated on top of the SiO2/layer forming a MOS capacitor structure. The embedded surface near CdSe nanocrystals show efficient steady state CdSe bandedge photoluminescence when excited by a cw-HeCd laser at a wavelength of 442 nm at room temperature. The silicon substrate was electrically contacted by indiffusion of an evaporated Al thin film. With this structure we observe strong electric field induced photoluminescence quenching when a voltage is applied between the Au gate electrode and the silicon substrate for temperatures below 77 K and room temperature. The PL quenching of more than 80% was found for an electric field variation between 0 and +/- 120 V/cm. CV-characteristics in conjunction with the electric field dependence of the PL quenching will be discussed.

HL 19.6 Tue 18:30 HSZ 01

Size dependence of the dynamics of the Mn 3d5 luminescence in wire-like arrangements of (Zn,Mn)S nanoparticles — **Chen1, P.J. Klar1, W. Heimbrodt2, F.J. Brieler2, and M. Fröhla2** — 1 Dept. Physics and WZMW, Philipps-University of Marburg, Germany — 2Institute of Inorganic and Analytical Chemistry, Justus-Liebig- University of Gießen, Germany

(Zn,Mn)S nanoparticles with Mn concentrations ranging from 1% to 30% and in a wire-like arrangement were formed inside mesoporous SiO2 matrices of various pore diameters. The nanoparticles were characterised using photoluminescence and excitation spectroscopy. It is found, that the Mn2+ ions are incorporated on cation lattice sites replacing Zn. The decay times of the internal Mn2+ (3d5) luminescence are studied in detail by time resolved spectroscopy over more than 5 orders of magnitude in intensity. A concentration and a remarkable size dependence of the time behaviour has been observed indicating a geometry dependence of the energy-transfer processes within the Mn system.

Semiconductor Physics

Sectional Programme Overview
Optical properties of implanted single ZnO nanowires —

Daniel Stichtenoth¹, Sven Müller¹, Carsten Ronning¹, Lars Wischmeier, Chiehgni Bekeny², and Tobias Voss² — ¹II. Institute of Physics, University of Göttingen, Germany — ²Institute for Solid State Physics, University of Bremen, Germany

Doping of semiconductor nanostructures via ion implantation processes offers the advantage of precise control of the doping concentration in both lateral and depth direction beyond any solubility limit. In this study, single crystalline ZnO nanobelts and -wires were synthesized according to the VLS mechanism and subsequently dispersed on top of Si substrates. The nanowires were implanted either with ¹⁴N, ³¹P, ¹⁴N & ³¹P, or ²⁰Ne ions. Nitrogen and Phosphorous are potential acceptors in ZnO; whereas, the objective of the Ne-implantation was to monitor the implantation induced damage. The range of the ions, set by the ion energy, matched the diameter of the nanowires, and post-implantation annealing procedures were done under vacuum conditions in order to remove the introduced damage. The treated nanowires were individually investigated by temperature-dependent µ-PL measurements; correlations between the optical spectra and the implanted species as well as the implantation parameters are discussed.

Nitrogen implanted ZnO nanowires —

Sven Müller, Daniel Stichtenoth, Daniel Schwen, and Carsten Ronning — 2nd Institute of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Single crystalline ZnO nanowires were grown via a chemical vapor deposition process: ZnO powder was placed into a horizontal tube furnace and heated up to 1350°C. The vapour was transported by an Ar gas flow to the substrates in a temperature zone between 1000 - 1180°C. Prior to growth the Si substrates were covered with a thin gold layer, which acts as a catalyst for the vapour-liquid-solid (VLS) mechanism. The wurtzite ZnO nanowires grew along the c-axis and had a belt-like shape in the nanometer range. These ZnO nanowires were implanted with 50 keV nitrogen ions (as a potential acceptor) in order to change the electrical and optical properties. Directly after the implantation process, the properties were dominated by the radiation damage, which was subsequently healed by annealing in vacuum or in an oxygen atmosphere. The nitrogen implantation generated three new luminescence transitions at energies of 3.35 eV, 3.32, and 3.235 eV. The origin of these features will be discussed in respect to their temperature- and power-dependencies.

Optical Spectroscopy on Silicon Nanoparticles —

Stephan Lüttjohann¹, Cedrik Meier¹, Andreas Gondorf¹, Axel Lorke¹, and Hartmut Wiggers² — ¹Laboratorium für Festkörperphysik, Universität Duisburg-Essen, 47048 Duisburg — ²Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen, 47048 Duisburg

The optical properties of silicon nanoparticles have been studied by photoluminescence and Raman spectroscopy. The particles are fabricated in a low pressure microwave reactor by decomposition of silane. We have investigated particles in a size range of between d=4.2nm and 60nm. For particles with diameters smaller than 30nm, quantum effects become relevant and are observed in Raman spectra as well as in photoluminescence spectra. The Raman spectra show the phonon confinement effect which redshifts the energy of the observed phonons. The PL emission wavelength (between 600nm and 1000nm) shifts towards lower wavelengths with decreasing particle sizes. Investigations of the PL intensity as a function of the temperature reveal an interesting behaviour. The PL intensity has a maximum at about T=80K and decreases for higher as well as lower temperatures.

To get a better understanding about the origin of these effects, microphotoluminescence is employed. First results showing sharp emission lines (FWHM ≈ 1meV) originating from excitonic and biexcitonic recombination are presented. As a result of the strong Coulomb interaction in the particles the spectra show a remarkable high exciton to biexciton energy splitting of 32meV.