Location: HSZ 301

TT 19: Correlated Electrons: Metal-Insulator Transition 3

Time: Tuesday 14:00–15:15

On the spin-state and metal-insulator transition in $RBaCo_2O_{5.5} - \bullet T.C.$ KOETHE¹, Z. HU¹, HUA WU¹, C. SCHÜSSLER-LANGEHEINE¹, J.C. CEZAR², F. VENTURINI², N.B. BROOKES², H.H. HSIEH³, H.-J. LIN³, C.T. CHEN³, S.N. BARILO⁴, S.V. SHIRYAEV⁴, G.L. BYCHKOV⁴, and L.H. TJENG¹ - ¹II.PhysikalischesInstitut Universität zu Köln - ²ESRF, Grenoble, France - ³NSRRC, Hsinchu, Taiwan - ⁴Belarus Academy of Sciences, Minsk, Belarus

The novel layered perovskite $RBaCo_2O_{5.5}$ (R = rare earth) has attracted considerable interest in the last decade. It shows an intriguing mix of properties, including giant magneto-resistance, metal-insulator and antiferro-ferromagnetic transitions, and a sign change of the thermoelectric power across these transitions. Explanation of these properties is subject of on-going debate. The so-called spin-blockade mechanism together with the occurrence of a spin-state transition of the octahedral Co^{3+} ions was proposed [Maignan *et al.*, PRL **93** 026401 (2004)]. Other scenarios invoke, for example, order-disorder effects, involving essentially all possible spin state configurations for the octahedral and pyramidal Co³⁺ ions. Using high quality single crystals and bulk sensitive photoelectron and x-ray absorption spectroscopy, we were able to identify the spin-state of the Co ions, thereby arriving at a very different scenario than proposed so far in the literature. We also find that the transfer of spectral weight near the Fermi level across the metal-insulator transition is very modest, in contrast to existing assumptions but in agreement with our observation on the evolution of the spin-state as a function of temperature.

TT 19.2 Tue 14:15 HSZ 301

Spin blockade, orbital occupation and charge ordering in La_{1.5}Sr_{0.5}CoO₄ — •CHUN FU CHANG¹, ZHIWEI HU¹, HUA WU¹, TO-BIAS BURNUS¹, NILS HOLLMANN¹, MOHAMMED BENOMAR¹, THOMAS LORENZ¹, ARATA TANAKA², HONG-JI LIN³, HUI-HUANG HSIEH⁴, CHIEN-TE CHEN³, and LIU HAO TJENG¹ — ¹II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany — ²Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan — ³National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30077, Taiwan — ⁴ChungCheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan

Using Co- $L_{2,3}$ and O-K x-ray absorption spectroscopy, we reveal that the charge ordering in La_{1.5}Sr_{0.5}CoO₄ involves high spin (S=3/2) Co²⁺ and low spin (S=0) Co³⁺ ions. This provides evidence for the spin blockade phenomenon as a source for the extremely insulating nature of the La_{2-x}Sr_xCoO₄ series. The associated e_g^2 and e_g^0 orbital occupation accounts for the large contrast in the Co-O bond lengths, and in turn, the high charge ordering temperature. Yet, the low magnetic ordering temperature is naturally explained by the presence of the non-magnetic (S=0) Co³⁺ ions. From the identification of the bands we infer that La_{1.5}Sr_{0.5}CoO₄ is a narrow band material.

TT 19.3 Tue 14:30 HSZ 301

Application of Sum Rules to Resonant Magnetic Diffraction — •MARCEL BUCHHOLZ¹, CHRISTIAN SCHÜSSLER-LANGEHEINE¹, MAURITS W. HAVERKORT^{1,2}, HSUEH-HUNG WU^{1,3}, CHUN-FU CHANG¹, MATTHIAS CWIK¹, MOHAMMED BENOMAR¹, ENRICO SCHIERLE⁴, ARATA TANAKA⁵, MARKUS BRADEN¹, and LIU HAO TJENG¹ — ¹II. Physikalisches Institut, Universität zu Köln — ²Max Planck Institut für Festkörperforschung, Stuttgart — ³NSRRC, Hsinchu, Taiwan — ⁴Helmholtz-Zentrum Berlin — ⁵ADSM, Hiroshima University, Japan Sum rules relating the spin and orbital moment to integrals over the x-ray magnetic circular dichroism (XMCD) signal are well established and widely used to determine fundamental quantum numbers for ferromagnetic systems.

Resonant magnetic diffraction is closely related to the XMCD effect and can be used to apply sum rules also to magnetically ordered systems without net magnetic moment like antiferromagnets or magnetically ordered systems with multiple sublattices. We tested this approach using holmium metal as a model system. The determination of the proper phase turns out to be a crucial point in the analysis.

We applied the sum-rule analysis to Sr- and Ca-doped La_2CoO_4 and compare the results to microscopic model calculations.

Supported by the DFG through SFB 608 and by the BMBF through 05 ES3XBA/5.

TT 19.4 Tue 14:45 HSZ 301 Pressure-induced superconductivity in the Mott insulator GaNb₄S₈ — XIN WANG¹, •MARTIN K. FORTHAUS², KARL SYASSEN¹, MATHIAS KRAKEN³, JOCHEN LITTERST³, HUBERTUS LUETKENS⁴, DIRK JOHRENDT⁵, and MOHSEN M. ABD-ELMEGUID² — ¹Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany — ²II. Physikalisches Institut, Iniversität zu Köln, Köln, Germany — ³Institut für Physik der kondensierten Materie, TU Braunschweig, Braunschweig, Germany — ⁴Paul Scherrer Institut, Villigen, Switzerland — ⁵Department Chemie und Biochemie, LMU München, München, Germany

GaNb₄S₈ (cubic fcc GaMo₄S₈ type structure) belongs to a new class of Mott insulators in which the electronic conduction originates from hopping of localized electrons (S = 1/2) among widely separated tetrahedral Nb₄ metal clusters. The magnetic susceptibility ($\chi(T)$) of GaNb₄S₈ shows Curie-Weiss behavior ($100 \le T \le 300$ K) and reveals a sudden drop around 30 K but no long range magnetic order has been detected down to 1.6 K. Recent strutural investigation shows that the drop of $\chi(T)$ is associated with a tetragonal distortion. We find pressure-induced superconductivity in GaNb₄S₈ with $T_C = 2.1$ K at p = 10 GPa which increases with pressure up to 4 K at 23 GPa. As our μ SR experiments at ambient pressure clearly shows that the tetragonal distortion in GaNb₄S₈ is associated with the onset of short range magnetic order, we discuss the possibility of a nonconventional pressure-induced superconducting state.

TT 19.5 Tue 15:00 HSZ 301 The local/non-local duality of 5f electrons in actinide compounds: A mean-field study — •DUC-ANH LE¹, SEBASTIEN BURDIN², PETER FULDE¹, and GERTRUD ZWICKNAGL³ — ¹Max Planck Institute for the Physics of Complex Systems, Dresden, Germany — ²Institute of Theoretical Physics, University of Cologne, Germany — ³Institute for Mathematical and Theoretcal Physics, TU Braunschweig, Germany

The local/non-local duality of 5f electrons in actinide compounds has been observed in a great variety of experiments including photoemission spectroscopy, inelastic neutron scattering, muon spin relaxation measurements, and x-ray inelastic scattering. A general microscopic mechanism leading to the partial localization of 5f orbitals has been proposed within the so-called 'dual model' (D. V. Efremov, et al., Phys. Rev. B 69, 115114 (2004)). It is a generalized multiorbital Hubbard model which includes the direct Coulomb interaction as well as the Hund's rule correlations. Using a generalized slave boson method (F. Lechermann, et al., Phys. Rev. B 76, 155102 (2007)), we study this model for an electronic filling corresponding to the prototype compound UPt3. We then analyse the calculated phase diagram and discuss the local/non-local and magnetic/non-magnetic phases in terms of orbitally dependent quasi-particle residues and partial electronic occupations.