HK 25: Nukleare Astrophysik II

Time: Tuesday 16:30-19:00

Location: HS3

We investigate the response of pair-correlated neutron matter under conditions relevant to neutron stars to external weak probes and compute its neutrino emissivity in vector and axialvector channels. To derive the response functions we sum up an infinite chain of particlehole ladder diagrams within finite-temperature Green's function theory. The polarization tensor of matter is evaluated in the limit of small momentum transfers. The calculated neutrino emission via the weak neutral current processes of pair-breaking and recombination of Cooper-pairs in neutron stars causes a cooling of their baryonic interior, and represents an important mechanism for the thermal evolution of the star within a certain time domain.

HK 25.5 Tue 17:45 HS3

Neutrino interactions in hot strange quark matter — •ANDREAS LOHS¹ and JÜRGEN SCHAFFNER-BIELICH² — ¹Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max von Laue-Str. 1, D-60438 Frankfurt, Germany — ²Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 16, D-69120, Heidelberg, Germany

Recent merger simulations pointed out the possibility of the formation of compact stars or accretion disks composed by hot strange quark matter with temperatures above 10 MeV. The dominant cooling mechanisms of these objects is neutrino emission. Neutrino transport properties for large temperatures are therefore needed since to date only calculations for small temperatures were considered for the late cooling of compact stars.

We calculate the neutrino emissivities associated with electron capture by up-quark as well as d-quark decay. We show that, at variance with previous calculations, they differ from each other up to three orders of magnitude in chemical equilibrium at temperatures of a few MeV.

Furthermore we proove that positron capture is the dominant antineutrino producing reaction at high temperatures.

Finally we provide some examples of cooling of strange quark matter for merger environments and discuss the possible connections with short gamma ray bursts.

HK 25.6 Tue 18:00 HS3 **Resonanzstärken in der** ⁴⁰**Ca**(α, γ)⁴⁴**Ti-Reaktion** — •Konrad Schmidt^{1,2}, Chavkat Akhmadaliev¹, Michael Anders¹, Daniel Bemmerer¹, Konstanze Boretzky³, Antonio Caciolli⁴, Zoltán Elekes¹, Zsolt Fülöp⁵, György Gyürky⁵, Roland Hannaske¹, Arnd Junghans¹, Michele Marta¹, Ronald Schwengner¹, Tamás Szücs⁵, Andreas Wagner¹ und Kai Zuber² — ¹Forschungszentrum Dresden-Rossendorf (FZD), Dresden — ²TU Dresden — ³GSI, Darmstadt — ⁴INFN Padua, Italien — ⁵ATOMKI, Debrecen, Ungarn

Das Nuklid ⁴⁴Ti (Halbwertszeit 59 Jahre) wird in Supernovae erzeugt. Die γ -Strahlung aus seinem Zerfall lässt sich in weltraumgestützten γ -Teleskopen nachweisen und kann als Werkzeug zum Test von Supernova-Modellen genutzt werden. Hierfür ist eine genaue Kenntnis der Kernreaktionsraten für die Erzeugung und Zerstörung von ⁴⁴Ti erforderlich. Die ⁴⁰Ca(α, γ)⁴⁴Ti-Reaktion dominiert die Erzeugung von ⁴⁴Ti. Ihre Rate wird von einer Vielzahl von Resonanzen bestimmt. Um präzise Daten zu gewinnen, wurde die Stärke des Resonanztripletts bei 4.5 MeV α -Energie am Dresdner 3 MV Tandetron sowohl mittels in-beam γ -Spektrometrie als auch durch eine Aktivierungsmessung im Felsenkeller-Niederniveaumesslabor gemessen. Eine Untersuchung der bestrahlten Proben mittels Beschleunigermassenspektrometrie ist geplant. – Gefördert von der EU (FP7-SPIRIT 227012) und der DFG (BE 4100/2-1).

 $\begin{array}{ccc} {\rm HK\ 25.7} & {\rm Tue\ 18:15} & {\rm HS3} \\ {\bf 59Fe(n,\gamma)60Fe\ measured\ by\ Coulomb\ Dissociation\ -- \bullet {\rm T}_{\rm ANJA} \\ {\rm Heftrich\ for\ the\ s389-Collaboration\ -- University\ of\ Frankfurt,\ Germany } \end{array}$

One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive elements using γ -ray observatories such as INTEGRAL. Of particular importance are the two long-lived radioactive isotopes 26 Al and 60 Fe whose production is thought to be associated with the nucleosynthesis in hot carbon or oxygen shell burning in massive pre-supernova stars and in the

Group Report HK 25.1 Tue 16:30 HS3 **Composition, structure, and thermal evolution of magnetized and rotating compact stars.** — •RODRIGO PICANCO NEGREIROS¹, STEFAN SCHRAMM¹, VERONICA DEXHEIMER², FRIDOLIN WEBER³, IGOR MISHUSTIN^{1,4}, and TORSTEN SCHUERHOFF¹ — ¹Frankfurt Institute for Advanced Studies — ²Gettysburg College — ³San Diego State University — ⁴The Kurchatov Institute

In this work we will report our findings on our research on the composition, structure and thermal evolution of compact objects. We use observed data of compact stars to probe matter at high-density and low temperatures. In our work we investigate the three major fronts of compact star research: the microscopic composition, the macroscopic structure, and the thermal evolution. Our theoretical predictions are compared to observed data, which allows us to assess the validity of the models. We explore a variety of microscopic models, with special attention given to a particular hybrid star model, in which the quark and hadronic phase of the star is described by a Flavor SU(3) sigmaomega model. We also consider the effects of a magnetic field on the microscopic composition, and the consequences to the structure and thermal evolution of the star. Since compact stars may be rotating very rapidly, we also investigate the effects of rotation on the structure of these objects. Furthermore, the changes in structure that follow the spin evolution of the star is also investigated. We also show our results for the thermal evolution of spinning down neutron stars. Finally we discuss the possible connection between differentially rotating quark stars and Central Compact Objects.

HK 25.2 Tue 17:00 HS3 Quark matter in massive neutron stars -•SIMON Weissenborn¹, Irina Sagert², Giuseppe Pagliara¹, Matthias Hempel^3 , and $\text{Jürgen Schaffner-Bielich}^1 - {}^1\text{Institute for Theo-}$ retical Physics, Ruprecht-Karls University, Philosophenweg 16, Heidelberg, D-69120 — ²Frankfurt Institute for Advanced Studies, Goethe University, Ruth-Moufang Str. 1, Frankfurt, D-60438 — ³Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 The recent observation of the pulsar PSR J1614-2230 with a mass of 1.97 solar masses gives a strong constraint on the nuclear matter equation of state. We explore the parameter ranges for a parameterized equation of state for quark stars. We find that such massive objects made of absolutely stable strange quark matter can reach the new constraint only if effects from the strong coupling constant and color superconductivity are considered. Also hybrid stars are able to be massive but a pure quark matter core appears only if the hadronic equation of state is stiff. A soft hadronic equation of state would imply that hybrid stars contain just a core of quark hadron mixed phase. In general, due to the softening of the equation of state at the quarkhadron phase transition the masses of hybrid stars stay below the ones of hadronic and pure quark stars.

HK 25.3 Tue 17:15 HS3

Nuclear matter equation of state below saturation density in a relativistic mean-field model with new constraints on the couplings — •MARIA VOSKRESENSKAYA¹ and STEFAN TYPEL^{1,2} — ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt — ²Excellence Cluster Universe, TU München, Garching

The description of neutron star matter requires the knowledge of the equation of state (EoS) in a wide range of densities. In this work we are trying to improve the phenomenological description of nuclear matter within a generalized relativistic mean field (RMF) model with density dependent coupling constants. The couplings are well constrained only near the saturation density of nuclear matter and are extrapolated to smaller and higher densities. A comparison of the RMF equation of state of nuclear matter with the virial expansion leads to new constraints for the couplings at small densities. A new parametrization of density dependent couplings is suggested based on these constraints and various effects are discussed that are important for the thermodynamical properties of matter below saturation.

HK 25.4 Tue 17:30 HS3 Response functions of superfluid neutron matter — •JOCHEN KELLER and ARMEN SEDRAKIAN — Institut für Theoretische Physik, Goethe Universität Frankfurt/Main, 60438 Frankfurt/Main subsequent shockfront driven explosive nucleosynthesis of type II supernovae. While the reactions of ²⁶Al has been studied extensively, very little is known about the reactions associated with the nucleosynthesis of ⁶⁰Fe. The production rate ⁵⁹Fe(n,γ)⁶⁰Fe is difficult to measure directly because of the short half-life of ⁵⁹Fe ($t_{1/2}$ =44.5 d). Coulomb dissociation measurements of ⁵⁹Fe and ⁶⁰Fe were performed at the R3B/LAND Setup at GSI. The unstable iron isotopes were produced by fragmentation of a 660 AMeV primary beam of ⁶⁴Ni on a 4 g/cm2 Be target. The dissociation cross section ⁶⁰Fe(γ , n)⁵⁹Fe is important to study the inverse neutron capture process via detailed balance. In order to prove this method, ⁵⁹Fe(γ , n)⁵⁹Fe was studied to determine the already directly measured ⁵⁸Fe(n,γ)⁵⁹Fe cross section. The astrophysical motivation, an overview of the experimental setup and first results of the measurements will be presented. This project is supported by the HGF Young Investigator Project VH-NG-327.

HK 25.8 Tue 18:30 HS3

Search for Supernova ⁶⁰Fe in the Earth's Microfossil Record — •SHAWN BISHOP¹, PETER LUDWIG¹, THOMAS FAESTERMANN¹, GUNTHER KORSCHINEK¹, GEORG RUGEL¹, and RAMON EGLI² — ¹Fakultät für Physik, Technische Universität München, James-Franck-Straße 1, D-85747 Garching, Germany — ²Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Theresienstrasse 41, D-80333 Munich, Germany

Approximately 2.8 Myr before the present, our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of $^{60}\mathrm{Fe}$ in a deep-sea ferromanganese crust. The signature for this supernova event should also reside

in magnetite (Fe₃O₄) microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction, provided the bacteria preferentially uptake iron from fine-grained iron oxides and ferric hydroxides. Using estimates for the terrestrial supernova ⁶⁰Fe flux, combined with our empirically derived microfossil concentrations of a deep-sea drill core, we deduce a conservative estimate of the ⁶⁰Fe fraction as ⁶⁰Fe/Fe = 3.6×10^{-15} . This value sits comfortably within the sensitivity limit of present accelerator mass spectroscopy capabilities. The implication is that a biogenic signature of this cosmic event resides, and is detectable, in the Earth's fossil record.

In this talk we describe this idea in further detail and present our magnetic scanning data from a Pacific Ocean drill core (provided by the Ocean Drilling Program, ODP) that allows us to quantify the mass concentration of Fe within the microfossils.

HK 25.9 Tue 18:45 HS3 Neutron stars with small radii - the role of Delta resonances — •TORSTEN SCHÜRHOFF — Institut für Theoretische Physik, Goethe Universität Frankfurt/Main, 60438 Frankfurt/Main, FIAS

Recent neutron star observations suggest that the masses and radii of neutron stars may be smaller than previously considered, which would disfavor a purely nucleonic equation of state (EoS). In our model, we use a flavor SU(3) sigma model that includes Δ resonances and hyperons in the EoS. We find that if the coupling of the Δ resonances to the vector mesons is slightly smaller than that of the nucleons, we can reproduce both the measured mass-radius relationship and the extrapolated EoS.