K 2: Licht- und Strahlungsquellen I

Time: Monday 15:30-16:00

K 2.1 Mon 15:30 V57.04

High-energy, 3.3-octave spanning supercontinuum in bulk driven at mid-IR — •MATTHIAS BAUDISCH¹, FRANCISCO SILVA¹, DANE AUSTIN¹, ALEXANDRE THAI¹, MICHAËL HEMMER¹, ARNAUD COUAIRON², and JENS BIEGERT^{1,3} — ¹ICFO - Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain — ²Centre de Physique Theorique, Ecole Polytechnique, CNRS UMR 7644, F-91128 Palaiseau Cedex, France — ³ICREA - Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Ultra-broadband, coherent radiation has a rising importance for many applications such as optical coherence tomography and multicolor pump-probe spectroscopy. In this work we demonstrate the generation of a supercontinuum in yttrium aluminum garnet (YAG) spanning from the visible up to the mid-IR. The pump pulses centered at 3100 nm were provided by a home-built optical parametric chirped pulse amplifier delivering carrier-envelope phase stable pulses with 10 μ J of pulse energy, 67 fs duration and 160 kHz repetition rate. For the experiment the beam was focused into a 2 mm-thick YAG plate. The detection was realized using three detectors to cover the entire spectral extend of the continuum. The measured spectrum spans smoothly from 450 nm up to 4500 nm with high spectral energy densities from 2 pJ/nm in the 750-1000 nm spectral range up to 10 nJ/nm around the mid-infrared pump wavelength.

K 2.2 Mon 15:45 V57.04

Location: V57.04

Photodissociation of $Fe(CO)_5$ studied by femtosecond RIXS — •KRISTJAN KUNNUS¹, MARTIN BEYE¹, ALEXANDER FÖHLISCH¹, KELLY GAFFNEY⁵, FRANK DE GROOT⁸, SEBASTIAN GRÜBEL², ROBERT HARTSOCK⁵, FRANZ HENNIES³, IDA JOSEFFSON⁷, CHRISTIAN KALUS¹, KERSTIN KALUS¹, BRIAN KENNEDY³, DENNIS NORDLUND⁴, MICHAEL ODELIUS⁷, WILSON QUEVEDO¹, IVAN RAJKOVIC², BILL SCHLOTTER⁶, MIRKO SCHOLZ², SIMON SCHRECK¹, EDLIRA SULJOT¹, SIMONE TECHERT², JOSH TURNER⁶, CHRISTIAN WENIGER¹, PHILIPPE WERNET¹, and WENKAI ZHANG⁵ — ¹Helmholtz-Zentrum Berlin, Berlin, Germany — ³MAX-lab, Lund, Sweden — ⁴SSRL, SLAC National Accelerator Laboratory, Menlo Park, US — ⁶LCLS, SLAC National Accelerator Laboratory, Menlo Park, US — ⁶LCLS, SLAC National Accelerator Laboratory, Menlo Park, US — ⁷Stockholm University, Stockholm, Sweden — ⁸Utrecht University, Utrecht, Netherlands

The photodissociation reaction of $Fe(CO)_5$ solvated in ethanol was investigated in a pump-probe experiment with 300 fs time resolution. Resonant inelastic x-ray scattering (RIXS) and restricted active space self-consistent field (RASSCF) calculations enabled us to characterize low-lying excitations of parent $Fe(CO)_5$ molecules and $Fe(CO)_4$ photoproducts. The experiment was carried out at the Linac Coherent Light Source (LCLS) to utilize very intense tuneable soft x-ray pulses with femtosecond duration as required for a femtosecond RIXS experiment.