Location: H20

MA 47: Transport: Spintronics, Magnetotransport 2 (jointly with HL&MA)

Time: Friday 9:30–10:30

MA 47.1 Fri 9:30 H20

Bulk sensitive photoelectron spectroscopy on CrO_2 thin films — •JONAS WEINEN¹, STEFANO AGRESTINI¹, MARTIN ROTTER¹, SI-MONE G. ALTENDORF¹, ZHIWEI HU¹, CHUN-FU CHANG¹, ARUN GUPTA², YEN FA LIAO³, KU-DING TSUEI³, and LIU HAO TJENG¹ — ¹Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden — ²The University of Alabama, Tuscaloosa, USA — ³National Synchrotron Radiation Research Centre, Hsinchu, Taiwan

For transition metal compounds with a high oxidation state the socalled charge transfer energy can become negative, with the result that a spontaneous electron redistribution could occur in which oxygen holes are formed. Such seems to be the case for the ferromagnet CrO₂. Using the LDA+U method, Korotin et al. [PRL 80, 4305 (1998)] calculated that the material is a metal and remains a metal even for very large values of U. This suggests that it is not so much the Cr 3d states that determine whether the system is metallic or insulating, but rather that it is the O 2p states which straddle the chemical potential.—Several photoelectron spectroscopy (PES) studies have been reported in the literature, but the results are not consistent, supposedly related to the fact that the surface of CrO₂ tends to decompose to Cr_2O_3 under vacuum conditions, so that surface sensitive PES may not have probed the true bulk spectrum of CrO₂.—We set out to perform bulk sensitive photoemission experiments below and above T_C on CrO_2 thin films using our HAXPES system at SPring-8. Our results suggest that CrO₂ may be considered more like a bad metal rather than a normal metal.

This work is also supported by DFG through FOR1346.

MA 47.2 Fri 9:45 H20

Initial stages of epitaxial growth of $\text{Fe}_3\text{O}_4/\text{MgO}$ (001) thin films: atomic reconstruction at the polar interface — •CHUN-FU CHANG¹, ZHIWEI HU¹, STEFAN KLEIN², RONNY SUTARTO², PHILIPP HANSMANN², ARATA TANAKA³, JULIO CRIGINSKI CESAR⁴, NICHOLAS BROOKES⁴, HONG-JI LIN⁵, HUI-HUANG HSIEH⁶, CHIEN-TE CHEN⁵, A. DIANA RATA¹, and LIU HAO TJENG¹ — ¹Max Planck Institute for Chemical Physics of Solids, Dresden, Germany — ²II. Physikalisches Institut, Universität zu Köln, Köln, Germany — ³Department of Quantum Matter, ADSM, Hiroshima University, Hiroshima, Japan — ⁴ESRF, Grenoble Cédex, France — ⁵NSRRC, Hsinchu, Taiwan — ⁶Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan

By means of reflection high energy electron diffraction and Fe $L_{2,3}$ x-ray absorption spectroscopy we find evidence for an atomic structural reconstruction at the interface of polar Fe₃O₄/MgO (001) thin films. This reconstruction takes place over several monolayers, while

each monolayer still preserves the Fe_3O_4 stoichiometery. Our findings for such a transition interface layer may have important implications especially in the field of spintronics, where ultrathin Fe_3O_4 films are widely used for various sensitive devices.

MA 47.3 Fri 10:00 H20

Investigation of the Verwey transition in Fe_3O_4 thin films — •XIONGHUA LIU, AKFINY HASDI AIMON, A. DIANA RATA, CHUN-FU CHANG, and LIU HAO TJENG — Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany

Magnetite Fe₃O₄ is one of the most investigated materials from the class of transition metal oxides. It shows a first-order anomaly in the temperature dependence of the electrical conductivity at $T_V = 120$ K, the famous Verwey transition. However, thin films of Fe₃O₄ show always a lower T_V compared to the bulk material. In order to find out the reason for the decreased T_V in magnetite thin films we have performed a systematic investigation of the transport properties in dependence of the oxygen pressure and thickness. Epitaxial Fe₃O₄ films were grown by Molecular Beam Epitaxy on MgO(100) and MgAl₂O₄ (100) substrates and the structural and spectroscopic characteristics were in-situ determined by RHEED and XPS, respectively. Resistivity measurements have been performed ex-situ by PPMS. Results of this study and ongoing work will be presented.

MA 47.4 Fri 10:15 H20 Electronic Structure and Magnetic Properties of Sc doped EuO Thin Films — •ANDREAS REISNER¹, SIMONE ALTENDORF¹, CHUN-FU CHANG¹, HONG-JI LIN², CHIEN-TE CHEN², and LIU HAO TJENG¹ — ¹Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str.40, 01187 Dresden, Germany — ²National Synchrotron Radiation Research Center, Hsin-Ann Road, 30076 Hsinchu, Taiwan, R.O.C.

Europium monoxide is a ferromagnetic semiconductor with a Curie temperature T_C of 69 K. Upon doping the material can show an increase of the Curie temperature, a metal-to-insulator transition and a high spin polarization of the charge carriers. Applying pressure can also enhance T_C . Mostly other trivalent rare earth metals are used as dopant. Here we set out to explore the possibility of using transition metals as dopants. As a start we focus on the non magnetic Sc ions. We are able to achieve excellent crystalline growth of Sc-doped EuO thin films on YSZ (001) substrates using molecular beam epitaxy. We will report our results on the crystal structure as characterized by RHEED and LEED, the electronic structure as measured by SQUID.