Symposium Higgs Modes in Condensed Matter and Quantum Gases (SYHM)

jointly organized by the Low Temperature Physics Division (TT), the Dynamics and Statistical Physics Division (DY), the Magnetism Division (MA), and the Surface Science Division (O)

Martin Dressel	Dirk Manske
University of Stuttgart	Max Planck Institute
First Institute of Physics	for Solid State Research
Pfaffenwaldring 57	Heisenbergstr. 1
70550 Stuttgart	70569 Stuttgart
dressel@pi1.physik.uni-stuttgart.de	d.manske@fkf.mpg.de

The discovery of the Higgs particle in 2012 at CERN has a large impact beyond the field of highenergy physics and triggered intense research in condensed matter physics. A Higgs mode emerges as a collective oscillation of order parameter amplitude in various ordered phases of condensed matter systems, such as Bose gases in optical lattices, superfluid ³He, superconductors, densitywave systems, and magnetic materials. Understanding the fundamental role of the Higgs modes is expected to lead to a unified description of these condensed matter systems. In this Symposium recent developments of research on Higgs modes in various condensed matter systems and quantum gases are presented, covering theoretical aspects as well a latest experimental developments; the focus will be on collective excitations in superconductors.

Overview of Invited Talks and Sessions

(Lecture room: H 0105)

Invited Talks

SYHM 1.1	Wed	15:00 - 15:30	H 0105	Amplitude or Higgs Modes in Condensed Matter – •Chandra
				VARMA
SYHM 1.2	Wed	15:30 - 16:00	H 0105	Higgs Particles for Systems with $U(1)$ Symmetry in Two Dimen-
				sions — •Lode Pollet
SYHM 1.3	Wed	16:00-16:30	H 0105	Massive Photons and the Anderson-Higgs Mechanism in Supercon-
				$ductors - \bullet Dirk$ van der Marel
SYHM 1.4	Wed	16:45 - 17:15	H 0105	Amplitude Higgs Mode in $2H$ -NbSe ₂ Superconductor — •MARIE-
				AUDE MÉASSON, ROMAIN GRASSET, YANN GALLAIS, MAX CAZAYOUS,
				Alain Sacuto, Pierre Rodière, Laurent Cario
SYHM 1.5	Wed	17:15-17:45	H 0105	The Higgs Mode in Disordered Superconductors Close to a Quan-
			tum Phase Transition — • Aviad Frydman, Daniel Sherman, Uwe S.	
				Pracht, Boris Gorshunov, Martin Dressel

Sessions

SYHM 1.1–1.5 V	Wed	15:00-17:45	H 0105	Higgs Modes in Condensed Matter and Quantum Gase
----------------	-----	-------------	----------	--