Location: H38

## MM 45: Invited talk Horbach

Time: Wednesday 19:00-19:30

Invited TalkMM 45.1Wed 19:00H38localComputer simulation of bulk-metallic glasses under shear:rietFrom inhomogeneous flow patterns to mechanical propertiesMotties• JUERGEN HORBACH<sup>1</sup>, GAURAV PRAKASH SHRIVASTAV<sup>1</sup>, andMotPINAKI CHAUDHURI<sup>2</sup>- <sup>1</sup>Institute for Theoretical Physics II, University of Düsseldorf, Germany<sup>2</sup>The Institute of Mathematical Sciences, Chennai, Indiastress

The response of glasses to mechanical loading often leads to the formation of inhomogeneous flow patterns that may strongly affect the materials properties. Among them, shear bands, associated with strain localization in form of band-like structures, are ubiquitous in a wide variety of materials, ranging from soft matter systems to metallic alloys. Molecular dynamics simulations of a model of  $Ni_{80}P_{20}$  are performed to investigate the formation of shear bands, using different flow protocols. Under an externally applied constant stress, persistent creep in the form of shear-banded structures is observed around the yield stress, whereas under the application of a constant strain rate, shear bands occur at sufficiently low strain rates. We analyze the nucleation of the shear-banded structures as well as the mechanical properties of the deformed glasses.