Zeit: Mittwoch 17:30-18:30

GR 11: Gravitationswellen

Raum: SFG 0140

GR 11.1 Mi 17:30 SFG 0140 Beating the standard sensitivity-bandwidth limit of cavityenhanced interferometers with internal squeezed light generation — •MIKHAIL KOROBKO¹, LISA KLEYBOLTE¹, STEFAN AST², HAIXING MIAO³, YANBEI CHEN⁴, and ROMAN SCHNABEL¹ — ¹Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany — ²Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Callinstraße 38, 30167 Hannover, Germany — ³Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom — ⁴Caltech CaRT, Pasadena, California 91125, USA

The shot-noise limited sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, given the fixed light power inside the detector. This comes at a price of proportional reduction of the detection bandwidth. It is possible to overcome this standard sensitivity-bandwidth limit using non-classical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a non-classical correlation directly inside the interferometer cavity. We analyse the limits of the approach theoretically, and measure 36% increase in the sensitivitybandwidth product compared to the classical case. To our knowledge this is the first experimental demonstration of improving the sensitivity-bandwidth product using internal squeezing.

GR 11.2 Mi 17:50 SFG 0140

Astrophysical Gravitational Waves in Conformal Gravity — •PATRIC HÖLSCHER¹, CHIARA CAPRINI², and DOMINIK SCHWARZ¹ — ¹Bielefeld University, Bielefeld, Germany — ²Astroparticle and Cosmology laboratory, Paris, France

We investigate the gravitational radiation from binary systems in Con-

formal Gravity and Massive Conformal Gravity. Therefore, we derive the inhomogeneous linearized field equations for the metric which are given by a massive Klein-Gordon equation.

To calculate the radiated energy we follow the standard method by deriving an expression for the gravitational energy-momentum tensor. In order to explain the decrease of the orbital period of binary systems we use data from the analysis of galaxy rotation curves and from the well-measured binary system PSRJ1012+5307.

Our result is that there is nearly no decrease of the orbital period. This means that gravitational radiation is not effective and there has to be another mechanism to explain the shrinkage of the orbital period of binary systems.

GR 11.3 Mi 18:10 SFG 0140 Quasinormal modes of perturbed black holes in Einsteindilaton-Gauss-Bonnet gravity — Jose Luis Blazquez-SALCEDO¹, CAIO F. B. MACEDO², VITOR CARDOSO³, VALERIA FERRARI⁴, LEONARDO GUALTIERI⁵, •FECH SCEN KHOO⁶, JUTTA KUNZ⁷, and PAOLO PANI⁸ — ¹University of Oldenburg, Oldenburg, Germany — ²Universidade de Lisboa, Lisboa, Portugal — ³Universidade de Lisboa, Lisboa, Portugal — ⁴Sapienza Universita di Roma, Sezione INFN Roma1, Roma, Italy — ⁶Jacobs University, Bremen, Germany — ⁷University of Oldenburg, Oldenburg, Germany — ⁸Sapienza Universita di Roma, Sezione INFN Roma1, Roma, Italy

We will discuss the gravitational waves emitted by distorted black holes in a gravity theory that extends general relativity to include the coupling of a scalar field (dilaton) and the topological Gauss-Bonnet invariant which is second order in curvature. We will be focusing in this talk on the quasinormal modes which are most relevant for the ringdown phase of the gravitational waves, where we explore the linear mode stability of the black holes against axial and polar perturbations.