Location: H 0104

TT 2: Symposium: High Magnetic Field Phenomena in Low Dimensional Magnets

Time: Monday 9:30–13:00

TT 2.1 Mon 9:30 H 0104

High magnetic fields with low dimensional magnets — •ALAN TENNANT — Hahn Meitner Institut, Berlin, Germany

High magnetic fields provide a near perfect degree of control over the physics of low dimensional magnets. A broad array of new physical states and phase transitions are being predicted theoretically and discovered experimentally. In this talk I give an overview of some of the new magnetic states that are being discovered including quantum criticality, exotic phase transitions, and fractionalisation of quasi-particles. I shall also outline some of the challenges for the future for experiment and the developing array of tools and materials that are opening up this field of study.

Invited Talk TT 2.2 Mon 10:00 H 0104 High Field NMR in Low Dimensional Quantum Antiferromagnets — •CLAUDE BERTHIER¹, HADRIEN MAYAFFRE², MAR-TIN KLANJŠEK¹, STEFFEN KRÄMER¹, and MLADEN HORVATIĆ¹ — ¹Grenoble High Magnetic Field Laboratory (GHMFL), CNRS, BP — ²Lab. de Spectrométrie Physique, UJF Grenoble I

We present high field NMR studies of the field induced magnetic ordering in a few quasi-1D quantum antiferromagnets. $Cu_2(C_5H_{12}N_2)_2Cl_4$ (Cu(Hp)Cl) has for long been considered as the archetype of a strong coupling spin-ladder system. We show that it can be well understood in the framework of a spin-ladder with a staggered Dzyaloshinskii-Moriya (DM) interaction on the rungs [1]. $CuBr_4(C_5H_{12}N)_2$ (BPCB) is made of regular spin-ladders (without DM interaction) weakly coupled together. Its phase diagram between the two quantum critical field H_{c1} and H_{c2} is fully dominated by the H dependence of the Luttinger liquid parameters of the ladders [2]. We also briefly report the NMR evidence for the existence of an unconventional quantum ground state in the 1/3 magnetization plateau in the frustrated diamond chain compound $Cu_3(CO_3)_2(OH)_2$ (azurite) [3].

[1] M. Clémancey et al., Phys. Rev. Lett. 97, 167204 (2006).

[2] M. Klanjšek, H. Mayaffre, et al., unpublished.

[3] S. Krämer *et al.*, unpublished.

TT 2.3 Mon 10:30 H 0104 Exotic ground states in high magnetic fields — •ANDREAS LÄUCHLI — IRRMA, Ecole Polytechnique Fédérale de Lausanne,

Switzerland Over the last few years it has been discovered that quantum magnets in strong magnetic fields can host a variety of long-sought exotic phases. In this talk we review recent theoretical efforts revealing magnetization plateaux with complex structures, supersolid phases sustaining simultaneous longitudinal and transverse magnetic order, as well as spin nematic phases, which spontaneously break spin rotational symmetry in the absence of an ordered moment. We discuss the experimental signatures of these phases and point out materials which could possibly display such exciting behavior.

TT 2.4 Mon 11:00 H 0104

High-field properties of a critical frustrated chain cuprate: Li₂ZrCuO₄ — •STEFAN-LUDWIG DRECHSLER¹, RÜDI-GER KLINGELER¹, NATALIA TRISTAN¹, NORMAN LEPS¹, JOHANNES RICHTER², THOMAS LORENZ³, OLGA VOLKOVA⁴, ALEXANDER VASILIEV⁵, and BERND BÜCHNER¹ — ¹IFW-Dresden, P.O. Box 270116, D-01171 Dresden, — ²Inst. f. Theoret. Physik, Universität Magdeburg — ³II. Physikal. Inst., Universität zu Köln — ⁴Inst. f. Electronics and Automatics, Moscow, Russia — ⁵Lomonosov University, Moscow, Russia

We report an unusual strong field dependence of the magnetic specific heat $c_p(T, H)$, the thermal expansion $\alpha(T, H)$, and the magnetization m(T, H) curve of the frustrated edge-shared chain cuprate Li₂ZrCuO₄ which is close to the quantum critical point between ferromagnetic and helical ordering [1]. The low-temperature peak of $c_p(T)$ is first down shifted for H < 9 T, then reaches a broad plateau before its position is up shifted at high fields $H \approx 30$ T. The thermal expansion α changes its sign at about 9 T. The magnetization m(H) saturates at 15-20 T at low temperature well above the estimated saturation field $H_s \approx 4.5$ T for the 1D J_1 - J_2 -Heisenberg model pointing to a non-neglible influence of the interchain exchange in accord with estimates based on the dispersion of the LDA bands perpendicular to the chain direction.

Possible scenarios for the deviation of the experimental $c_p(T, H)$ data at high fields from the predictions of the isotropic 1D J_1 - J_2 -Heisenberg model are briefly discussed.

[1] S.-L. Drechsler et al., Phys. Rev. Lett. 98, 077202 (2007).

15 min. break

Invited TalkTT 2.5Mon 11:30H 0104Dimensional Reduction at a Quantum Critical Point•CRISTIAN BATISTA — Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Competition between ground states near a quantum critical point is expected to lead to unconventional behavior in low dimensional systems. New phases of matter have been predicted, and explanations proposed for unsolved problems including non-Fermi liquid behavior and high temperature superconductivity using two-dimensional (2d) theories. In this talk, I will present a theory that describes the Bose-Einstein condensate (BEC) quantum critical point (QCP) in layered systems with a frustrated inter-layer coupling. I will demonstrate that the main effect of this geometric frustration is to reduce the dimensionality of the QCP (its critical exponents are the ones expected for a 2d system). In addition, I will present the first experimental evidence of dimensional reduction at a QCP observed in the Mott insulator BaCuSi₂O₆ (Han Purple).

TT 2.6 Mon 12:00 H 0104 Excitation hierarchy of the spin-1 large-D system NiCl₂- $4SC(NH_2)_2$ — •S.A. ZVYAGIN¹, J. WOSNITZA¹, C.D. BATISTA², J. KRZYSTEK³, V.S. ZAPF⁴, M. JAIME⁴, A. PADUAN-FILHO⁵, M. TSUKAMOTO⁶, and N. KAWASHIMA⁶ — ¹Hochfeld-Magnetlabor Dresden/Forschungszentrum Dresden - Rossendorf — ²LANL, USA — ³NHMFL, USA — ⁴NHMFL/LANL, USA — ⁵Sao Paulo University, Brzail — ⁶ISSP, University of Tokyo, Japan

NiCl₂-4SC(NH₂)₂ (known as DTN) is an S = 1 chain system with the easy-plane anisotropy dominating over the exchange interaction (so-called large-D system) and a new candidate for studying the fieldinduced Bose-Einstein condensation of magnons. The excitation spectrum of DTN has been investigated by means of tunable-frequency ESR technique in fields up to 25 T. Based on analysis of the magnon excitation spectrum, a revised set of spin-Hamiltonian parameters was obtained. These values were used to calculate the AFM phase boundary, low-temperature magnetization and the frequency-field dependence of two-magnon bound-state excitations, predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data was obtained.

[1] Phys. Rev. Lett. 98, 047205 (2007).

TT 2.7 Mon 12:15 H 0104 Exploring field-induced quantum phase transitions in molecule-based magnets — •MICHAEL LANG¹, KATARINA REMOVIC-LANGER¹, YEEKIN TSUI¹, ULRICH TUTSCH¹, BERND WOLF¹, ANDREI PROKOFIEV¹, WOLF ASSMUS¹, ROSER VALENTI², ANDREAS HONECKER³, MATTHIAS WAGNER⁴, and STEFAN WESSEL⁵ — ¹Phys. Inst. Univ. Frankfurt, SFB/TR 49 — ²Inst. f. Theor. Physik, Univ. Frankfurt, SFB/TR 49 — ³Inst. f. Theor. Physik, Univ. Frankfurt, SFB/TR 49 — ³Inst. f. Theor. Physik, Univ. Göttingen — ⁴Inst. f. Anorg. u. Analyt. Chemie, Univ. Frankfurt, SFB/TR 49 — ⁵Inst. f. Theor. Physik III, Univ. Stuttgart

Molecule-based quantum magnets offer exciting new possibilities for exploring quantum many-body effects under variable and wellcontrolled conditions. Subjects of high current interest are the unusual magnetothermal effects close to a magnetic field-induced quantum critical point and the possibility to realize a Bose-Einstein condensation (BEC) of magnetic excitations. We focus here on Cu(II)-containing coordination polymers, which represent model systems with energy scales small enough for laboratory fields to tune the system close to their quantum critical points. We will discuss the magnetocaloric effect close to the saturation field of a uniform S = 1/2 antiferromagnetic Heisenberg chain and the field-induced BEC of magnetic excitations in a quasi-twodimensional coupled-dimer system.

TT 2.8 Mon 12:45 H 0104Diverging low-temperature thermal expansion of the spin**ladder system** $(C_5H_{12}N)_2CuBr_4 - \bullet$ THOMAS LORENZ¹, OLIVER HEYER¹, MARKUS GARST², FABRIZIO ANFUSO², ACHIM ROSCH², CHRIS-TIAN RÜEGG³, and KARL KRÄMER⁴ — ¹Institue of Physics II, University of Cologne, Germany — ²Institue of Theoretical Physics, University of Cologne, Germany — ³Centre for Nanotechnology and Dep. of Phys. and Astronomy, University College London, UK — ⁴Department of Chemistry and Biochemistry, University of Bern, Switzerland

The magnetic subsystem of piperidinium copper bromide $(C_5H_{12}N)_2CuBr_4$ represents a model system of an experimental realization of a two-leg spin-ladder Hamiltonian. Due to comparatively weak antiferromagnetic exchange couplings along the legs ($\simeq 12.9$ K)

and the rungs ($\simeq 3.6$ K) of the ladders, two quantum phase transition are easily accessible in this compound: at $H_{c1} \simeq 6.8$ T the gap closes and at $H_{c2} \simeq 13.9$ T the field-polarized ferromagnetic state is reached. We present high-resolution measurements of the uniaxial thermal expansion and magnetostriction of $(C_5H_{12}N)_2CuBr_4$. For both quantities we observe pronounced anomalies arising from the pressure dependencies of the critical fields. The thermal expansion shows a very complex behavior with various sign changes and approaches a $1/\sqrt{T}$ divergence at the critical fields. All these low-temperature features are semi-quantitatively explained within a free fermion model; full quantitative agreement is obtained with Quantum Monte Carlo simulations.

Supported by the DFG through SFB 608.