HL 54: Invited Talk Hübner

Time: Friday 11:00-11:45

Invited TalkHL 54.1Fri 11:00HSZ 01Spin Noise Spectroscopy in Semiconductor Nanostructures —•JENS HÜBNER, MICHAEL RÖMER, GEORG MÜLLER, HANNES BERNIEN,
TAMMO BÖNTGEN, HAUKE HORN, and MICHAEL OESTREICH — Insti-
tute for Solid State Physics, Gottfried Wilhelm Leibniz University
Hannover, Appelstr. 2, 30167 Hannover, Germany

The aim towards semiconductor spin devices and spin quantum information processing drives the current intense research on semiconductors spintronics. Spin noise spectroscopy in semiconductors (SNS) is a new powerful method to reveal the spin related physical processes of a wealth of semiconductor systems [1]. Known from quantum optics as quantum non-demolition measurement, SNS is in particular capable to unravel the intrinsic spin dynamics without disturbing influences. SNS measurements at low temperatures on weakly n-doped bulk GaAs yield for example spin lifetimes up to 260 ns, which has been masked before by carrier heating and spin relaxation by holes. In two dimensional systems like n-doped 110-GaAs quantum wells, SNS is capable to distinguish between intrinsic and extrinsic spin dephasing mechanisms like, e.g., pure dephasing and time of flight broadening resulting from the electron motion [2]. SNS can be as well applied to zero dimensional systems like quantum dots or impurity bound carriers.

[1] M. Oestreich, M. Römer, R. J. Haug, and D. Hägele, Phys. Rev. Lett. **95**, 216603 (2005).

[2] G. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hübner, and M. Oestreich, Phys. Rev. Lett. 101, 206601 (2008).