MO 15: Femtosecond Spectroscopy IV

Time: Wednesday 11:00-12:30

Invited Talk MO 15.1 Wed 11:00 F 102 Lasing in Nitrogen Gas Induced by Femtosecond Filamentation — •ANDRIUS BALTUSKA¹, DANIIL KARTASHOV¹, JENS MÖHRING², SKIRMANTAS ALIŠAUSKAS¹, GIEDRIUS ANDRIUKAITIS¹, STEFAN HÄSSLER¹, AUDRIUS PUGŽLYS¹, ALEKSEI ZHELTIKOV^{3,4}, MARKUS MOTZKUS², MISHA IVANOV⁵, and OLGA SMIRNOVA⁵ — ¹Photonics Institute Vienna University of Technology, Vienna, Austria — ²Physikalisch-Chemisches Institut University Heidelberg, Heidelberg, Germany — ³Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia — ⁴Department of Physics and Astronomy, Texas A&M University, College Station, USA — ⁵Max-Born Institute, Berlin, Germany

Harnessing ultraviolet nitrogen laser emission in air for the purpose of remote sensing has been a topic of numerous studies over the past decade. Unlike in the case of a conventional discharge-driven nitrogen laser, the possible lasing mechanisms are very different for remote excitation with intense femtosecond pulses that form filaments - long narrow channels of low-density cold plasma. New exciting possibilities in this field have arisen since the emergence of novel IR and Mid-IR femtosecond lasers in the past two years. In this talk, we will demonstrate various types of remotely-induced coherent emission, forward as well as backward, from neutral N2 and molecular cation, with and without inversion, which were obtained using single infrared pulses and adaptively shaped pulse trains. The role of free-electron plasma, phase-matched nonlinear wave mixing effects and molecular rotational dynamics will be examined.

MO 15.2 Wed 11:30 F 102

Observation and manipulation of electron dynamics in level systems — •HENDRIKE BRAUN, DOMINIK PENGEL, CRISTIAN SARPE, MATTHIAS WOLLENHAUPT, and THOMAS BAUMERT — University of Kassel, Institute of Physics and CINSaT, D-34132 Kassel, Germany

The aim of coherent control is to guide a system from an initial state to a preselected target state. Therefore the final population in the target state is generally used as the observable. However, particularly in strong laser fields, the transient dynamics is strongly influenced by nonperturbative interactions such as level shifts. To this end we investigate the transient and final population electron dynamics in the potassium atom during the interaction with a strong resonant laser field. Femtosecond laser pulses are used to induce, control, and probe the electron motion in the level system. A carefully devised two-colour experiment allows for the investigation of the light induced energetic level shifts as well as the transient and final populations.

MO 15.3 Wed 11:45 F 102

Ultrafast X-Ray Diffraction Experiments on Crystalline DI-ABN via a Laser Driven Plasma Source — •FLORIAN TROMMER, STEFAN M. HOFMANN, FLORIAN J. LEDERER, JULIAN SCHAUSEIL, and WOLFGANG ZINTH — Chair for BioMolecular Optics, Ludwig-Maximilians-University Munich, Oettingenstr. 67, 80538 Munich, Germany

Information on the ultrafast behavior of molecules is most often obtained via spectroscopy. On the other hand, the structure of these molecules has been accessible through X-ray diffraction. Since the introduction of laser driven plasma sources, structure dynamics can also be studied on the femtosecond timescale. In our group we are currently implementing a Pump-Probe-experiment with visible Pump and X-ray Probe.

By using gallium arsenide we could characterise the X-ray source itself and develop techniques for optaining temporal and spatial overlap. The crucial issue in these measurements was to improve experimental precision and to find and eliminate sources of noise in order to apLocation: F 102

proach the shot-noise limit. Finally the optimized setup is used to investigate 4-(Diisopropylamino)benzonitrile (DIABN) crystals[1]. This work is supported by the DFG Cluster of Excellence: Munich-

Centre for Advanced Photonics (MAP). [1] M. Braun et al., Applied Physics A, **96**(1) 107 (2009)

MO 15.4 Wed 12:00 F 102 Ultrafast X-ray photoelectron spectroscopy studies of photoinduced electronic dynamics in dye sensitized semiconductor nanocrystals. — •Katrin Siefermann^{1,2}, Fabian Weise¹, Ming-Fu Lin¹, Camila Bacellar¹, Ali Belkacem¹, Thorsten Weber¹, Felix Sturm¹, Daniel Slaughter¹, Champak Khurmi¹ TRAVIS WRIGHT¹, BOB SCHOENLEIN¹, MATTHEW STRADER¹ HANA CHO¹, ROBERT KAINDL¹, GIACOMO COSLOVICH¹, DAVID PRENDERGAST¹, ANDREY SHAVORSKIY¹, HENDRIK BLUHM¹, JINGHUA Guo¹, Marcus Hertlein¹, Tolek Tyliszczak¹, Amy Cordones³, Josh Vura-Weis³, Stephen Leone³, Daniel Neumark³, Sheraz Gul⁴, Jin Zhang⁴, Nils Huse⁵, Martin Beye⁶, Anders Nilsson⁷, HIROHITO OGASAWARA⁷, DENNIS NORDLUND⁷, JOSH TURNER⁷, BILL Schlotter⁷, Oleg Krupin⁷, Michael Holmes⁷, Mike Minitti⁷. JOSEPH ROBINSON⁷, MARC MESSERSCHMIDT⁷, PHIL HEIMANN⁷, and OLIVER GESSNER¹ — ¹Lawrence Berkeley National Laboratory, Berkeley, USA — ²Leibniz Institute of Surface Modification, Leipzig, Germany — ³University of California Berkeley, USA — ⁴University of California Santa Cruz, USA — ⁵Center for Free Electron Laser Science, Hamburg, Germany — ⁶Helmholtz Zentrum Berlin, Germany – ⁷SLAC National Accelerator Laboratory, Stanford, USA

We present time-resolved X-ray photoelectron spectroscopy (TRXPS) as a tool to investigate ultrafast dynamics in complex systems in real time. In a proof-of-principle experiment at the Linac Coherent Light Source (LCLS) at SLAC, we monitored the photoinduced oxidation state change of a Ruthenium-based dye complex (N3) attached to zinc oxide nanocrystals. This system is a critical component of dyesensitized solar cells. In our experiment, an ultrashort laser pulse with a center wavelength of 535 nm electronically excites the Ru dye complex. A time-delayed X-ray pulse centered at \sim 850 eV is used to record the inner shell photoelectron spectrum of the sample in the region of the Ru $3d_{3/2,5/2}$ lines. Oxidation of the dye is detected at a pumpprobe delay of ~ 500 fs as a transient shift of the Ru 3d photoelectron lines by ~ 2 eV toward higher binding energies. The experiment represents a first step toward an atomic site specific real-time picture of charge migration in dye sensitized solar cells and demonstrates the potential of time-resolved X-ray photoelectron spectroscopy (TRXPS) as a tool to investigate ultrafast electronic dynamics in complex systems.

MO 15.5 Wed 12:15 F 102

Signatures of attosecond dynamics in molecular dissociation — •JESSE KLEI, CHRISTIAN NEIDEL, CHUNG-HSIN YANG, LUKAS MEDISAUSKAS, MISHA IVANOV, and MARC VRAKKING — Max-Born-Institut, Berlin

We report on attosecond time-resolved XUV-IR pump-probe measurements, investigating the dissociative ionization of N₂. Angular resolved photoion measurements of the N⁺ fragments were performed using a velocity map imaging spectrometer (VMIS). The kinetic energy spectra of the fragment ions show a structure at low energies corresponding to the vibrational levels of the ionic $C_2 \Sigma_u^+$ state of N₂. The photoion yield of these vibrational energies show a clear oscillation as a function of the time delay between the attosecond pulse train (APT) and its infrared (IR) driving laser, with an oscillation period equal to half the IR laser cycle. The phase of the oscillations of the vibrational energy bands show clear jumps with respect to each other. We discuss how these results show the effect of attosecond electronic coherence in femtosecond molecular dynamics.