Dresden 2017 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 51: Topical session: Data driven materials design - databases

MM 51.2: Vortrag

Mittwoch, 22. März 2017, 17:30–17:45, BAR 205

The NOMAD Analytics Toolkit: Interactive Big-Data Driven Materials Science over the Web — •Luca M. Ghiringhelli, Fawzi Mohamed, Ankit Kariryaa, Angelo Ziletti, Christian Carbogno, and Matthias Scheffler — Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany [‡]

Big-data analytics opens new routes towards scientific insight by offering analysis tools that can reveal patterns, trends, and causal relationships so-far hidden in the data. The Novel Materials Discovery (NOMAD) Repository (https://nomad-repository.eu) stores millions of open-access materials-science calculations obtained with dozens of different codes. In order to perform analytics on this data, two further steps are necessary: i) the raw, code-specific inputs/outputs of the calculations need to be converted into a standardized format that uses one convention for, e.g., units, zero base lines, and file formats. We present a flexible and extensible metadata infrastructure (https://metainfo.nomad-coe.eu), implemented for storing the data in an intuitive, code-independent, representation. ii) the data needs to be easily and publicly searchable, retrievable, and analyzable. With the NOMAD analytics toolkit (https://analytics-toolkit.nomad-coe.eu/), we present an interactive web-interface that allows everybody, without need to install any software, to query and analyze the data. We demonstrate the toolkit with an analysis of oxide semiconductors data, looking for a structure-property relationship with statistical methods.

[‡] Collaboration with the full NOMAD team: https://nomad-coe.eu.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2017 > Dresden