Symposium Physics of Collective Mobility (SYCM)

jointly organized by the Physics of Socio-economic Systems Division (SOE), the Dynamics and Statistical Physics Division (DY), the Biological Physics Division (BP), and the Working Group "Young DPG" (AGjDPG)

Marc Timme	Vitaly Belik	Hartmut Löwen	
Institute for Nonlinear Dynamics	Institut für Veterinär-Epidemiologie	Institut für Theoretische Physik II	
MPI for Dynamics and	und Biometrie	Heinrich-Heine-Universität	
Self-Organization	FU Berlin	Düsseldorf	
Am Fassberg 17	Königsweg 67	Universitätsstraße 1	
37073 Göttingen	14163 Berlin	40225 Düsseldorf	
E-Mail	vitaly.belik@fu-berlin.de	hlow en @thphy.uni-duesseld or f.de	

How public and private mobility systems operate, currently drastically changes due to recent developments in information and communication technology. Traditional systems typically fall into extremes such as individual car traffic or line-based public transport. In contrast, future mobility becomes more decentralized, more flexible as well as more autonomous and demand-based. Whereas existing technological hurdles are likely solved within the next few years, flexible and more self-organized mobility systems induce a range of novel collective phenomena, including spatially and temporally correlated routing and shareability or new types of spontaneous congestions. Optimization schemes adapted from collective dynamics in biology, as swarm intelligence, provide classical analogies and approaches. Methods from Statistical Physics can help to reveal options, constraints, and mechanisms underlying such collective phenomena. Recently, artificial nanoswimmers have been developed towards medical applications. This Symposium gives a concise overview of topical questions that to date arise on flexible mobility systems and how physicists might address them.

(Symposium organizers: Marc Timme, Hartmut Löwen, and Vitaly Belik)

Overview of Invited Talks and Sessions

(Lecture room HSZ 02)

Invited Talks

SYCI	M 1.1	Wed	9:30-10:00	HSZ 02	Mobility in shareability networks — \bullet MICHAEL SZELL
SYCI	M 1.2	Wed	10:00-10:30	HSZ 02	Trail-following bacteria: from single particle dynamics to collective
					behaviour — Anatolij Gelimson, Kun Zhao, Calvin K. Lee, W. Till
					Kranz, Gerard C. L. Wong, •Ramin Golestanian
SYC	M 1.3	Wed	10:30 - 11:00	HSZ 02	Mobility and Self-Organization in Multi-Layer Networks: A Meta-
					Foodweb example — •Thilo Gross, Andreas Brechtel, Philipp
					GRAMLICH, DANIEL RITTERSKAMP, BARBARA DROSSEL
SYCI	M 1.4	Wed	11:15-11:45	HSZ 02	Temporal Percolation in Critical Collective Mobility Systems —
					•Andreas Sorge, Debsankha Manik, Jan Nagler, Marc Timme
SYCI	M 1.5	Wed	11:45 - 12:15	HSZ 02	Modeling the evolution of cities — •Marc Barthelemy

Sessions

SYCM 1.1–1.5	Wed	9:30-12:15	HSZ 02	Physics of Collective Mobility	(Symposium SYCM, joint SOE
				/ DY $/$ BP $/$ jDPG)	