HK 32: Structure and Dynamics of Nuclei V

Zeit: Mittwoch 16:45–19:00

GruppenberichtHK 32.1Mi 16:45F 33Experimental evidence for broken axial symmetry in most
heavy stable nuclei — •ECKART GROSSE¹, ARND R. JUNGHANS²,
and RALPH MASSARCZYK³ — ¹IKTP, Technische Universität Dres-
den, 01062 Dresden, Germany — ²IKP, Helmholtz-Zentrum Dresden-
Rossendorf, 01314 Dresden, Germany — ³Los Alamos National Labo-Saturational
Saturational
Distribution of the second second

ratory, New Mexico 87545, USA Using an approximation suggested by Bohr and Mottelson nearly all analysis of experimental data is still based on axial symmetry, although hints on its breaking were found in HFB calculations published recently by Delaroche et al. in PRC 81 as well as by spectroscopic studies. For a clarification we performed a re-analysis for two types of experimental data known for their sensitivity to nuclear deformation: The electric dipole response in the region of giant resonances and the collective enhancement of nuclear level densities. For both nearly no parameters remain free to be adjusted by a separate fit, if previous information about nuclear masses, radii etc. are used to fix parameters for the Gogny force, the droplet model and the surface dissipation model as based on hydrodynamics. For the IVGDR energies only an effective mass and for their strength the blocking of p-n pair absorption in nuclei has to be adjusted, when a triple Lorentzian (TLO) is used; for the level densities only shell and pairing effects as well as the symmetry have to be known, if the Fermi gas theory with its Tcrit is applied. In both cases the axial symmetry breaking in heavy nuclei already shows up already in the valley of stability indicating a nuclear Jahn-Teller effect as mentioned long ago by Reinhard and Otten in NPA 420.

HK 32.2 Mi 17:15 F 33 Coulomb excitation of 142 Xe — •CORINNA HENRICH¹, THORSTEN KRÖLL¹, MIRKO VON SCHMID¹, GARY SIMPSON², and MICHAEL THÜRAUF¹ for the IS548-Collaboration — ¹IKP, TU Darmstadt, Germany — ²LPSC, Grenoble, France

The neutron rich nucleus ¹⁴²Xe lies in the vicinity of the doubly magic nucleus ¹³²Sn and is only two protons below ¹⁴⁴Ba, which exhibits the largest octupule collectivity in the region. To study the onset of octupole collectivity and follow the evolution of quadrupole collectivity in this area a "safe" Coulomb excitation experiment was carried out at the new HIE-ISOLDE facility (CERN) in the end of 2016. Both beam and target nuclei were measured using C-REX, i.e. an array of segmented Si detectors, covering forward as well as backward angles. The MINIBALL spectrometer was used to detect the emitted gamma rays in coincidence. The experimental setup will be presented along with the first stages of the analysis.

This work is supported by BMBF under contract 05P15RDCIA, by the EU under contract ENSAR 262010 and by ISOLDE.

HK 32.3 Mi 17:30 F 33

Multinucleon transfer as a gateway to $\mathbf{Z} > 50, \mathbf{N} < 82$ nuclei •Andreas Vogt¹, Benedikt Birkenbach¹, Peter Reiter¹, Andrey Blazhev¹, Marco Siciliano^{2,3}, Kasia Hadyńska-Klek², CARL WHELDON⁴, ERI TERUYA⁵, and NAOTAKA YOSHINAGA⁵ ¹IKP, Universität zu Köln — ²INFN - LNL, Italy — ³INFN Padova, Italy — 4 University of Birmingham, UK — 5 Saitama University, Japan Multinucleon-transfer reactions (MNT) provide access to hard-to-reach nuclei in the vicinity of the Z = 50 and N = 82 shell closures. Nuclei in this region serve as a benchmark for nuclear shell-model calculations based on modern effective interactions. Excited reaction products were measured after MNT in 136 Xe + 238 U at 1 GeV and 136 Xe + 208 Pb at 930 MeV with the $\gamma\text{-ray}$ tracking array AGATA coupled to the mass spectrometer PRISMA at LNL (INFN, Italy) as well as in the ¹³⁶Xe + $^{198}\mathrm{Pt}$ MNT reaction employing GAMMASPHERE in combination with the gas-detector array CHICO. Furthermore, Xe and Ba isotopes were populated in fusion-evaporation reactions using the HORUS γ ray array at the University of Cologne. The high-spin level schemes of 132 Xe, 133 Xe, 134 Xe, 135 Xe and 137 Ba are considerably extended to higher energies. The 2058-keV $(19/2^{-})$ state in ¹³⁵Xe is identified as an 9.0(9)-ns isomer, closing a gap in the systematics along the N = 81isotones. Latest shell-model calculations reproduce the experimental findings. The experimentally-deduced reduced transition probabilities of the isomeric states are compared to shell-model predictions. Supported by the German BMBF (05P12PKFNE TP4, 05P15PKFN9), ENSAR-TNA03, BCGS.

Raum: F 33

HK 32.4 Mi 17:45 F 33

Saturation of B(E2)-strength near mid-shell? Lifetimes of ^{174,176,178,180}Hf. – •JOHANNES WIEDERHOLD¹, RALPH KERN¹, VOLKER WERNER^{1,4}, NORBERT PIETRALLA¹, NICU MARGINEAN², RALUCA MARGINEAN², CRISTINA R. NITA², SORIN PASCU², DOREL BUCURESCU², DAN M. FILIPESCU², NICOLETA FLOREA², DAN G. GHITA², CONSTANTIN MIHAI², RAZVAN LICA², PATRICK REGAN³, ROBERT CARROLL³, TERVER DANIEL³, LAILA GURGI³, RALITSA LIEVA^{3,4}, NATHAN COOPER⁴, and FARHEEN NAQVI⁴ — ¹IKP, TU-Darmstadt — ²IFIN-HH, Bucharest — ³Physics Department at Surrey — ⁴Yale University

Deformed nuclei in the rare earth region should show a saturation of the $B(E2;0_1^+ \rightarrow 2_1^+)$ -transition strength near mid-shell. Recent measurements of lifetimes of W-isotopes show discrepancies to literature values and seem to maximize the B(E2)-strength off mid-shell. An analog investigation is done on Hf-isotopes. Several lifetimes of excited states of the even-even isotopes 174,176,178,180 Hf have been measured with fast electronic scintillation timing (FEST) using the same experimental setup to minimize systematic deviations among the values. Excited States were populated via Coulomb excitation (180 Hf) and via β^+ -decay following fusion-evaporation reactions (174,176,178 Hf) at the 9 MV tandem accelerator of the IFIN-HH near Bucharest. Obtained lifetimes of the Hf-isotopes will be presented. This work was supported by the DFG under Grants No. SFB 634 and No. SFB 1245, the U.S. DOE Grant No. DE-FG02-91ER40609 and the BMBF under the grant 05P15RDFN9 within the collaboration 05P15 NuSTAR R&D.

HK 32.5 Mi 18:00 F 33 Finite-size effects of nuclei - Transitions from the scissors mode to the γ -vibrational band of 164 Dy \star — •TOBIAS BECK¹, UDO GAYER¹, JOHANN ISAAK^{2,3}, FNU KRISHICHAYAN⁴, BAS-TIAN LÖHER^{1,2}, NORBERT PIETRALLA¹, DENIZ SAVRAN², WERNER TORNOW⁴, and MARKUS ZWEIDINGER¹ — ¹IKP, TU Darmstadt — ²GSI, Darmstadt — ³RCNP, Osaka, Japan — ⁴Duke University, Durham, NC, USA

The understanding of collective phenomena of nuclei is attempted by a variety of theoretical models of microscopic, geometrical, and algebraic nature. In the algebraic Interacting Boson Model effects based on the finite size of the quantum system are predicted which are not incorporated in geometrical models. The observation of electromagnetic transitions between the isovector, low-lying $J_K^{\pi} = 1_1^+$ scissors mode and the 2^+_{γ} state provides a sensitive test of finite-size effects. A photonscattering experiment with linearly-polarized quasi monoenergetic $\vec{\gamma}$ rays has been performed at the High Intensity $\gamma\text{-ray}$ Source (HI $\gamma\text{S})$ at Duke University, Durham, NC, exploiting the γ^3 setup. We have unambiguously identified the $1_{sc}^+ \rightarrow 2_{\gamma}^+$ transition from $\gamma\gamma$ -coincidences, extracted the decay branching ratio and compared it to IBM-2 predictions. First results will be presented along with the ongoing analysis. * Supported by the DFG under grant nos. SFB 634 and SFB 1245 and by the Alliance Program of the Helmholtz Association under grant no. HA216/EMMI.

HK 32.6 Mi 18:15 F 33 Studying the angular distribution of the reaction ${}^{94}Mo(p,p'\gamma){}^{94}Mo$ @ 13.5 MeV with SONIC@HORUS — •MICHELLE FÄRBER, SIMON G. PICKSTONE, MARK SPIEKER, MICHAEL WEINERT, JULIUS WILHELMY, and ANDREAS ZILGES — Institute for Nuclear Physics, University of Cologne

The SONIC@HORUS setup of the Institute for Nuclear Physics in Cologne is used to investigate the low-energy response of the nucleus. Low spin states, e.g., the pygmy dipole resonance, can be studied by performing inelastic proton scattering reactions. An important observable for the investigation of these modes is the γ branching ratio which can be accessed with the setup. Furthermore, spins and parities can be assigned by measuring the angular correlation of the ejectile and the deexciting γ -ray. The obtained experimental distribution is in good agreement with the distorted wave born approximation (DWBA).

In this contribution, the results for the experimental angular distributions of the reaction ${}^{94}Mo(p,p'\gamma){}^{94}Mo$ as well as the corresponding theoretical description will be shown.

Supported by DFG(ZI 510/7-1). J.W. is supported by the Bonn-Cologne Graduate School of Physics and Astronomy.

HK 32.7 Mi 18:30 F 33

Possible hexadecapole states in ⁹⁶**Ru and** ¹²⁸**Te studied with the sdg-IBM-2** — •ORIANA DIESSEL, MARK SPIEKER, and ANDREAS ZILGES — Institute for Nuclear Physics, University of Cologne

Quadrupole excitations of fully-symmetric and mixed-symmetric nature are well established in atomic nuclei [1]. Octupole excitations of both types have also been discussed [2]. Recently, first candidates for mixed-symmetry hexadecapole states have been proposed based on a comparison of experimental data and sdg-IBM-2 calculations [3, 4].

In this contribution, the sdg-IBM-2 calculations for ⁹⁶Ru and ¹²⁸Te will be presented and compared to experimental data. Special emphasis will be put on possible hexadecapole-type excitations of both fully-symmetric and mixed-symmetric nature. To further test the hexadecapole phonon as a building block of nuclear structure, possible multiphonon couplings in ¹²⁸Te will be discussed as well.

Supported by the DFG (ZI 510/7-1).

 N. Pietralla *et al.*, Phys. Rev. C **61** (2000) 021301 [2] M. Scheck *et al.*, PRC **81** (2010) 064305 [3] R.J. Casperson *et al.*, Physics Letters B **721** (2013) 51 [4] A. Hennig *et al.*, Phys. Rev. C **90** (2014) 051302

HK 32.8 Mi 18:45 F 33

Struktur des Grundzustands vom doppelt-magischen Kern $^{208}{\rm Pb}$ — •ANDREAS HEUSLER — Gustav-Kirchhoff-Str. 7/1 69120 Heidelberg

Die Entdeckung von Vibrations- und Zweiteilchen-Zweilochkonfigurationen in 208 Pb [1] regt zur Klärung der lange anstehenden Frage an, wie die Struktur des Grundzustands des doppelt-magischen Kerns aussieht. Neben dem bekannten Neutron-Paarungszustand und den Doppeloktupolzuständen sind inzwischen zwei weitere 0⁺ Zustände entdeckt worden, der Proton-Paarungszustand [2] und ein Zweiteilchen-Zweilochzustand mit der Struktur Einteilchen-Einlochzustand gekoppelt an den Oktupolvibrationszustand. Lange bekannte Anregungsfunktionen der inelastischen Protonstreuung an ²⁰⁸Pb für tiefliegende Zustände werden durch Interferenzeffekte aus der bekannten Struktur von Einteilchen-Einlochzuständen erklärt. Zweiteilchen-Zweilochkonfigurationen im Grundzustand können diese Effekte bewirken. Wesentlich hierbei ist ein genaueres Verständnis der Asymmetrie von Anregungsfunktionen beim Protonzerfall von Analogresonanzen im ²⁰⁹Bi.

[1] A. Heusler et al. Phys. Rev. C 93:054321 (2016)

[2] A. Heusler et al. Phys. Rev. C 92:011302(R) (2015)