DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2019 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DS: Fachverband Dünne Schichten

DS 14: Poster

DS 14.54: Poster

Dienstag, 2. April 2019, 17:00–20:00, Poster E

Simulating Charge Transport Through Metal-Organic Semiconductor Interfaces: Bulk or Contact Limited? — •Markus Krammer1, Philipp Breitegger2, Chris Groves3, and Karin Zojer11Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Austria — 2Institute of Electronic Sensor System, Graz University of Technology, Austria — 3Department of Engineering, Durham University, United Kingdom

The performance of organic electronic devices crucially relies on an efficient charge injection. This efficiency is governed by a complex interplay of experimentally tunable properties like level alignment and disorder. The impact of this interplay on the bulk current is only poorly understood from a theoretical point of view. To overcome this lack of knowledge, we utilize mesoscopic simulations to predict the current density across the contact interface. In these simulations, charges are viewed to migrate through disordered organic semiconductors due to hopping between localised states. Parameters like injection barrier, energetic disorder, electric field, Coulomb interactions and temperature can be directly considered. This intuitive method holds the promise to understand the effects and interactions that govern the interplay between interfacial and bulk properties. We analyse the current density for instructive combinations of interface and bulk properties. This analysis yields two distinct regimes, a bulk limited regime and a contact limited regime. The evolution of the current density with respect to injection barrier, energetic disorder and electric field strength is investigated and the origin of bulk vs. contact limitation is analysed.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2019 > Regensburg