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Topical Talk O 51.1 Wed 10:30 H9
Theoretical Investigations of Electrochemical CO2 Reduction
— ∙Karen Chan — Department of Physics, Technical University of
Denmark
The electroreduction of CO2 has the potential to store energy from in-
termittent renewable sources and to produce carbon-neutral fuels and
chemicals; In this talk, I will discuss new developments in modeling
the electrochemical interface. I will then present the application of
these models of the interface to CO2 reduction: the determination of
reaction pathways and kinetics on transition metals, field and solva-
tion effects, pH effects on C2 product selectivity, and implications for
catalyst design.

Topical Talk O 51.2 Wed 11:00 H9
First-principles approach to model electrochemical reactions
at the solid-liquid interface — ∙Mira Todorova, Sudarsan
Surendralal, and Jörg Neugebauer — MPI für Eisenforschung,
Düsseldorf
Processes at solid-liquid interfaces are at the heart of many present day
technological challenges related to the improvement of battery mate-
rials, electro-catalysis, fuel cells, corrosion and others. Describing and
quantifying the underlying fundamental mechanisms is equally chal-
lenging for experimental and theoretical techniques.

Utilizing concepts from semiconductor physics, we have developed
a novel potentiostat design, which enables us to perform ab initio cal-
culations under controlled bias conditions. Easily applied in standard
density functional theory codes, it controls the electrode potential of
the system by tuning the excess charge of the working electrode and
allows us to obtain direct insight into key mechanisms of electrocataly-
sis and corrosion. As a prototype example, we consider one of the most
corrosive systems under wet conditions - Mg. Using the new approach
we solve a 150-year-old problem, which links H-evolution under anodic
conditions to Mg dissolution [1].

[1] S. Surendralal, M. Todorova, M.W. Finnis and J. Neugebauer,
Phys. Rev. Lett. 120, 246801 (2018).

O 51.3 Wed 11:30 H9
Towards out of the box implicit solvation at liquid-liquid
interfaces — ∙Jakob Filser1, Markus Sinstein1, Christoph
Scheurer1, Sebastian Matera2, Karsten Reuter1, and Harald
Oberhofer1 — 1Technische Universität München — 2Freie Univer-
sität Berlin
Implicit solvation models are widely used to incorporate solvent effects
in electronic structure theory. Treating the solvent as a structureless
dielectric continuum, they lift the necessity to explictly sample solvent
degrees of freedom. However, even state of the art models currently
cannot treat solvation at technically highly important dielectric inter-
faces, e.g. between two immiscible liquids.

As a remedy, we modify the multipole expansion (MPE) model
to also account for liquid-liquid interfaces, specifically focusing on
the electrostatics of mutually interacting dielectric regions. Non-
electrostatic free energy contributions thereby are treated with a sim-
ple linear model, fitted to experimental free energies of solvation in
the two liquids. We demonstrate the efficacy of this approach for
small molecules at a water–1-octanol interface, which show the correct
qualitative behaviour with respect to orientation and position at the
interface.

Future, quantitative applications of our new implicit solvation in-
terface methods are clearly possible but will necessitate both improve-
ments to the non-electrostatic free energy terms and a more exhaustive
parameterization effort for a wide range of solvents.

O 51.4 Wed 11:45 H9
Continuum models of the electrochemical diffuse layer
in electronic-structure calculations — ∙Francesco Nattino1,
Oliviero Andreussi2, and Nicola Marzari1 — 1Theory and Sim-
ulations of Materials (THEOS), and National Centre for Computa-
tional Design and Discovery of Novel Materials (MARVEL), École
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
— 2Department of Physics, University of North Texas, Denton, TX
76207, USA

The electrical diffuse layer is a structure that spontaneously forms at
essentially any solvated interface, such that its presence in electro-
chemistry is ubiquitous. While first-principles methods are desirable
to describe any process occurring at the surface, fully-atomistic mod-
els of electrolyte solutions suffer from computational limitations. In
this context, continuum models represent a practical tool to bypass
these difficulties and to account for the presence of the diffuse layer
at electrified interfaces. However, despite the increasing popularity
of continuum models in the field of materials science, even relatively
simple observables such as the differential capacitance (DC) of single-
crystal electrode surfaces remain challenging to model quantitatively.
I will present and discuss the performance of a hierarchy of contin-
uum diffuse-layer models that we have implemented and coupled to
an atomistic first-principles description of a charged metal surface. In
particular, I will compare computed DC values for the prototypical
Ag(100) surface in an aqueous solution to experimental data, and val-
idate in this way the accuracy of the models considered.

O 51.5 Wed 12:00 H9
Ab initio molecular dynamics of Pt(111)/H2O interfaces in
an electrolytic cell setup — ∙Sudarsan Surendralal, Mira
Todorova, and Jörg Neugebauer — Max-Planck-Institut für Eisen-
forschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
Recently, we developed a novel scheme to perform density functional
theory (DFT) simulations of electrochemical interfaces under con-
ditions of constant applied voltage utilizing charge transfer from a
semiconductor counter electrode [1]. We use a fractionally doped Ne
counter electrode because of its inertness, wide band gap, and low de-
formation potential. Our DFT based molecular dynamics calculations
of the Pt(111)/H2O interface in this setup reveals that we are able
to accurately reproduce macroscopic observables like the potential of
zero charge (PZC). We discuss the work function drop at the interface
at the PZC, due to the charge polarization by the non-dissociative
chemisorption of water molecules at the Pt surface. Possible pitfalls
due to the choice of the DFT exchange-correlation functional, non-
converged computational parameters and confinement effects due to
the presence of the counter electrode will also be discussed.

[1] S. Surendralal, M. Todorova, M. W. Finnis, and J. Neugebauer,
Phys. Rev. Lett. 120, 246801 (2018).

O 51.6 Wed 12:15 H9
Swipe left for water molecules? - Implicit vs explicit descrip-
tions of liquid water at interfaces. — ∙Nicolas Hörmann1,
Oliviero Andreussi2, and Nicola Marzari1 — 1Theory and Sim-
ulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, CH-1015
Lausanne, Switzerland — 2Department of Physics, University of North
Texas, Denton, TX 76207, USA
We present a study of relevant electrochemical interfaces, such as
semiconductor-water and metal-water interfaces based on periodic den-
sity functional theory (DFT) calculations with the interface modelled
with different degrees of complexity. Water at metallic surfaces is mod-
elled within the self-consistent continuum solvation scheme (SCCS) [1]
with explicit application of a potential which allows the comparison
of pH dependent properties with experimental results [2,3]. In the
case of semiconductors, different amounts of interfacial water are sub-
stituted with implicit solvent and observables such as the measured
band alignment are obtained from thermal averaging over molecular
dynamics snapshots. We find that it is necessary and sufficient to in-
clude strongly bound interfacial water molecules (dissociated or not)
explicitly and replace the rest with an implicit model, in order to ob-
tain consistent results with all-explicit simulations [4]. Based on these
result we simulate the surface Pourbaix diagrams of the most stable
surfaces of GaAs, GaN, GaP, CdS and anatase and rutile TiO2.

[1] J. Chem. Phys. 136, 064102 (2012); [2] Nat Commun. 9, 3117
(2018). [2,3] NH (2018) submitted

O 51.7 Wed 12:30 H9
Transition metal oxide nanoparticles as efficient catalysts for
proton exchange membrane electrolyzers: morphology, activ-
ity and stability — ∙Daniel Opalka, Yonghyuk Lee, Jakob Tim-
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mermann, Christoph Scheurer, and Karsten Reuter — Technis-
che Universität München
Transition metal oxides such as RuO2 and IrO2 are currently the best
known electrocatalysts for the oxygen evolution reaction from liquid
water in proton exchange membrane (PEM) electrolyzers. However,
dynamic load operation of PEM cells induces transformations of the
catalyst morphology leading to metal dissolution and catalyst degra-
dation. We present a computational model to predict the morphology,
activity and stability from ab initio electronic structure theory and
fundamental thermodynamic principles. Based on this model, we have
explored novel strategies to reduce material expenses and improve cat-
alyst stability while preserving high catalytic activity via nanoparticles
with a core-shell design. From an analysis of different surface coverages
with oxygen, hydroxyl and hydroxo species, voltage-dependent phase
diagrams for catalyst surfaces are presented which correlate with char-
acteristic features observed in cyclovoltammetric measurements. Re-
sults from atomistic models of selected nanoparticles on the basis of
Wulff’s Theorem show negligible size effects, but a strong influence of
the facet terminations on the surface relaxation.

O 51.8 Wed 12:45 H9
Modelling the fingerprint of chemical reactions on catalytic
surfaces in core-electron binding energies — ∙Johannes Lis-
chner and Juhan Matthias Kahk — Imperial College London
Core-electron X-ray photoemission spectroscopy is a powerful experi-
mental technique to gain information about chemical reactions on cat-
alytic surfaces. Interpreting experimental spectra, however, is often
challenging and theoretical modelling of core-electron binding energies
is required to meaningfully assign peaks to adsorbate species. In this
talk, I will present a novel first-principles modelling strategy to cal-
culate core-electron binding energies of molecules on metallic surfaces.
Specifically, we combine plane-wave/pseudoptential DFT calculations

of surface slab models for geometry optimizations with all-electron
Delta-SCF calculations on cluster models for determining accurate
core-electron binding energies. This approach is computationally effi-
cient and yields good agreement with experimental measurements for
a wide range of adsorbates on copper(111) surfaces.

O 51.9 Wed 13:00 H9
What Makes a Successful Photoanode? - The Role of
the Semiconductor–Catalyst Interface — ∙Franziska Simone
Hegner1, Benjamin Moss2, James Durrant2, Sixto Gimenez3,
José-Ramón Galán-Mascarós1, and Núria López1 — 1Institute
of Chemical Research of Catalonia (ICIQ) — 2Imperial College London
— 3Institute of Advanced Materials, Castellón
A large scale implementations of artificial photosynthesis is still limited
by the low efficiencies of the employed photoelectrochemical systems.
A common strategy to improve performance is to deposit a co-catalyst
on the light-harvesting photoanode. However, the role of the catalyst
is controversial; is it acting as a true catalyst, i.e. transferring charges,
or is it merely influencing the electronic structure of the semiconduc-
tor?[1]

The semiconductor-catalyst interface is key to catalytic perfor-
mance, but its accurate description is limited since linear scaling re-
lationships no longer apply. Herein the function of the co-catalyst
(cobalt hexacyanoferrate) is discussed on two photoanode interfaces,
Fe2O3 and BiVO4. Density Functional Theory and time-resolved spec-
troscopy were used to shed light on the underlying charge-transfer pro-
cesses. Taking into account the advantages and disadvantages of all ap-
plied techniques, a relationship between electronic structure alignment,
interface morphology, and photocatalytic efficiency is proposed.[2]

[1] D. R. Gamelin, Nat. Chem., 4 (2012), 965-967. [2] F. S. Hegner,
D. Cardena-Moscoros, S. Gimenez, N. López, J. R. Galán-Mascarós.
ChemSusChem, 10 (2017) 4552-4560.
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