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Invited Talk SYBD 1.1 Tue 9:30 HSZ 02
Materials innovation driven by data and knowledge systems
— ∙Surya Kalidindi — Georgia Institute of Technology, Atlanta,
USA
Emerging concepts and toolsets in Data science and Cyberinfrastruc-
ture can be strong enablers for systematic mining and capture of Ma-
terials Knowledge needed to guide efficient and possibly autonomous
explorations of the unimaginably large materials and process design
spaces, while synergistically leveraging all available experimental and
simulation data. The ongoing efforts in my research group are aimed
at accelerating materials innovation through the development of (i) a
new mathematical framework that allows a systematic and consistent
parametrization of the extremely large spaces in the representations of
the material hierarchical structure (spanning multiple length/structure
scales) and governing physics across a broad range of materials classes
and phenomena, (ii) a new formalism that evaluates all available next
steps in a given materials innovation effort (i.e., various multiscale ex-
periments and simulations) and rank-orders them based on their like-
lihood to produce the desired knowledge (expressed as PSP linkages),
and (iii) novel higher-throughput experimental assays that are specifi-
cally designed to produce the critically needed fundamental materials
data for calibrating the numerous parameters typically present in mul-
tiscale materials models. I will present and discuss ongoing research
activities in my group.

Invited Talk SYBD 1.2 Tue 10:00 HSZ 02
Network Theory Meets Materials Science — ∙Chris
Wolverton1, Murat Aykol2, and Vinay Hegde3 — 1Northwestern
University, Evanston, IL, USA — 2Toyota Research Institute, Los Al-
tos, CA, USA — 3Citrine Informatics, Redwood City, CA, USA
One of the holy grails of materials science, unlocking structure-
property relationships, has largely been pursued via bottom-up inves-
tigations of how the arrangement of atoms and interatomic bonding
in a material determine its macroscopic behavior. Here we consider
a complementary approach, a top-down study of the organizational
structure of networks of materials, based on the interaction between
materials themselves. We demonstrate the utility of applying net-
work theory to materials science in two applications: First, we un-
ravel the complete *phase stability network of all inorganic materials*
as a densely-connected complex network of 21,000 thermodynamically
stable compounds (nodes) interlinked by 41 million tie-lines (edges)
defining their two-phase equilibria, as computed by high-throughput
density functional theory. Using the connectivity of nodes in this phase
stability network, we derive a rational, data-driven metric for material
reactivity, the nobility index, and quantitatively identify the noblest
materials in nature. Second, we apply network theory to the problem
of synthesizability of inorganic materials, a grand challenge for accel-
erating their discovery using computations. We use machine-learning
of our network to predict the likelihood that hypothetical, computer
generated materials will be amenable to successful experimental syn-
thesis.

Invited Talk SYBD 1.3 Tue 10:30 HSZ 02
Verification and error estimates for ab initio data — ∙Claudia
Draxl — Humboldt-Universität zu Berlin, Germany — Fritz-Haber-
Institut der Max-Planck-Gesellschaft, Berlin, Germany
Veracity (uncertainty of data quality), one of the 4V challenges of
Big Data, is an issue for the FAIRness of (computational) materials-
science results. Creating benchmark data and estimating errors are
prerequisites for the interoperability of our research data. The preci-
sion of the many different computer codes used in the community has
been investigated thoroughly by evaluating the equation of state of
71 monoatomic crystals [1]. More recently, it has been demonstrated

how ultimate precision for molecules and solids in DFT calculations
can been reached [2] and how different methodology impacts the results
[3]. We also address code-specific uncertainties that come from numer-
ical settings commonly used in practice [4]. We do so by systematically
investigating total and relative energies as a function of computational
parameters, employing four popular DFT codes. Based on this, we
propose an analytical model for quantifying errors associated with the
basis-set incompleteness and predicting converged results. It will be
discussed how our approach enables comparison and interoperability of
the heterogeneous data present in computational materials databases
[5], for the purpose of data-driven research.

[1] K. Lejaeghere et al., Science 351, aad3000 (2016). [2] A. Gulans,
A. Kozhevnikov, and C. Draxl, Phys. Rev. B 97, 161105(R) (2018).
[3] A. Gulans and C. Draxl, preprint. [4] C. Carbogno, et al., preprint.
[5] https://nomad-repository.eu

15 min. break

Invited Talk SYBD 1.4 Tue 11:15 HSZ 02
Identifying Domains of Applicability of Machine Learning
Models for Materials Science — ∙Mario Boley1, Christo-
pher Sutton2, Luca M. Ghiringhelli2, Matthias Rupp3, Jilles
Vreeken4, and Matthias Scheffler2 — 1Monash University, Mel-
bourne, Australia — 2Fritz Haber Institute of the Max Planck Society,
Berlin, Germany — 3Citrine Informatics, Redwood City, California —
4Helmholtz Center for Information Security, Saarbrücken, Germany
Machine learning (ML) promises to accelerate the discovery of novel
materials by allowing to rapidly screen compounds at orders of magni-
tude lower computational cost than first-principles electronic-structure
approaches. A critical obstacle for the development of novel ML mod-
els is that the complex choices involved in designing them are currently
made based on the simplistic metric of the average model test error.
Treating models as a black box that produces a single error statistic
can render them as insufficient for certain screening tasks while they
actually predict the target property accurately in sub-domains of the
considered materials. We present an alternative diagnostic tool based
on subgroup discovery that detects domains of applicability of ML
models. These domains are given as a combination of simple condi-
tions on the unit cell structure (e.g., on the lattice vectors, lattice an-
gles, and bond distances) under which the model error is substantially
lower than its global average in the complete materials class. Such
descriptions allow to understand and subsequently address systematic
shortcomings of the investigated ML model and to focus sampling of
candidate materials to regions of low expected error.

Invited Talk SYBD 1.5 Tue 11:45 HSZ 02
Deep learning of low-dimensional latent space molecular sim-
ulators — ∙Andrew Ferguson — Pritzker School of Molecular En-
gineering, University of Chicago, Chicago, IL 60637
The long-time microscopic evolution of molecular systems is governed
by the leading eigenfunctions of the transfer operator that propa-
gates the system dynamics through time. The low-dimensional latent
space defined by these eigenfunctions parameterize the slow manifold
to which the system dynamics are constrained to evolve. A set of
three deep neural networks of different architectures trained over short
molecular simulation trajectories provides a means to (i) learn the
leading transfer operator eigenfunctions, (ii) propagate the dynamics
within the encoded latent space, and (iii) decode the latent space back
to the all-atom coordinate space. This technique offers a means to
train numerical simulators to conduct molecular simulations and esti-
mate thermodynamic and kinetic observables at orders-of-magnitude
lower cost than conventional molecular dynamics calculations.
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