TT 34: Correlated Electrons: f-Electron Systems and Heavy Fermions 1

Time: Wednesday 9:30–13:00

TT 34.1 Wed 9:30 HSZ 204 Crystal-field wave function of CeCu₂Si₂ across T_c and T_K studied with linear polarized x-ray absorption — •ANDREA MARINO^{1,2}, ANDREA AMORESE¹, MARTIN SUNDERMANN^{2,3}, KAI CHEN⁴, GERTRUD ZWICKNAGL⁵, MAURITS HAVERKORT⁶, FRANK STEGLICH¹, LIU HAO TJENG¹, and ANDREA SEVERING^{1,3} — ¹Max Planck Institute for Chemical Physics of Solids, Dresden, Germany — ²Dipartimento di Fisica, Politecnico di Milano, Milano, Italy — ³Institute of Physics II, University of Cologne, Cologne, Germany — ⁴Helmholz Zentrum Berlin (HZB) BESSY, Berlin, Germany — ⁵Institute for Mathematical Physics, Technical University Braunschweig, Braunschweig, Germany — ⁶Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany

We have investigated the crystal-field wave functions of CeCu₂Si₂ in the temperature range between 250 mK and 300 K, i.e. from well below to well above the superconducting transition temperature $T_c = 0.6$ K and the Kondo temperature $T_K \approx 10$ K using Ce $M_{4,5}$ x-ray absorption spectroscopy (XAS). The experiments in the mK regime were performed with the new mK insert at the DEIMOS beamline at synchrotron SOLEIL in France. The overall temperature dependence of the linear dichroism in the XAS is well explained with the thermal occupation of excited crystal-field states. Small deviations are discussed in terms of hybridization of *f*-electrons and conduction bands, supported by the temperature dependence of the f^0 satellite in the isotropic XAS spectra.

TT 34.2 Wed 9:45 HSZ 204

Temperature and Momentum Dependences of the Kondo Peak in the Heavy-Fermion System CeRh₂Si₂ — •GEORG POELCHEN¹, SUSANNE SCHULZ¹, MONIKA GÜTTLER¹, MAX MENDE¹, ALEXANDER GENERALOV², CHRISTOPH GEIBEL³, CORNELIUS KRELLNER⁴, STEFFEN DANZENBÄCHER¹, JAMES W ALLEN⁵, CLEMENS LAUBSCHAT¹, YURI KUCHERENKO⁶, and DENIS V VYALIKH^{7,8} — ¹IFMP, TU Dresden, Germany — ²Max IV Laboratory, Lund, Sweden — ³MPI for Chemical Physics of Solids, Dresden, Germany — ⁴Kristall- und Materiallabor, Goethe-Universität Frankfurt, Germany — ⁵Randall Laboratory, University of Michigan, USA — ⁶Institute for Metal Physics, National Academy of Science, Ukraine — ⁷DIPC, San Sebastian, Spain — ⁸IKERBASQUE, Bilbao, Spain

Ultra-violet angle-resolved photoemission spectroscopy (UV-ARPES) was used to explore the temperature dependences of different surface terminations of the antiferromagnetic Kondo lattice CeRh₂Si₂. Spectra were taken from Ce- and Si-terminated surfaces in a wide temperature range, and reveal characteristic 4f patterns for weakly (surface) and strongly (bulk) hybridized Ce, respectively. Surprisingly, the temperature dependence of the Fermi level peak points to a considerably larger effective Kondo temperature at the surface, likely due to a higher local-moment effective degeneracy.

Further, we derived the k-resolved dispersion of the Kondo peak which is also found to be distinct due to different sets of itinerant bands to which the 4f states couple, highlighting that the Kondo physics vary remarkably between surface and bulk of the Kondo lattice material.

TT 34.3 Wed 10:00 HSZ 204

TbRh₂**Si**₂ and **TbIr**₂**Si**₂: Single crystal growth and characterization — •ALEXEJ KRAIKER, KRISTIN KLIEMT, and CORNELIUS KRELLNER — Physikalisches Institut, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany

In the last decades, many studies on RT₂Si₂ (R = rare earth, T = transition metal) ternary silicides have been made. The compounds which crystallize in the bodycentered tetragonal ThCr₂Si₂ structure exhibit exceptional magnetic properties such as superconductivity, valence fluctuations or the Kondo effect. In recent years, we have started to systematically investigate the magnetic properties of RRh₂Si₂ compounds, which present exciting surface properties, strongly influenced by the 4f-magetism [1,2]. So far, the magnetism of TbRh₂Si₂ and TbIr₂Si₂ has been studied on polycrystalline samples [3,4]. These compounds show antiferromagnetic order below T_N = 92 K and T_N = 84 K respectively with a magnetic ordering vector k = (001). In this contribution, we present the details of the crystal growth of single crystals of these two compounds grown by Bridgman method from indium flux. We show the results of specific heat, specific resistivity and mag-

Location: HSZ 204

netization measurements, with the focus on the magnetic transition [5].

[1] M. Güttler et al., Sci. Rep. 6, 24254 (2016)

[2] A. Generalov et al., Nano Lett. 17, 811 (2017).

[3] S. Quezel et al., Solid State Commun. 49, 7 (1984)

[4] T. Shigeoka et al., Physics Procedia, 75, 837-844 (2015)

[5] K. Kliemt et al., Cryst Res. Technol. 1900116 (2019)

TT 34.4 Wed 10:15 HSZ 204 Superconductivity and heavy-fermion behavior in locally non-centrosymmetric LnIr₂As₂ (Ln = La and Ce) — •SEUNGHYUN KHIM, MARKUS KÖNIG, and CHRISTOPH GEIBEL — Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany

Compounds containing atoms with a large atomic number are considered a candidate for the realization of unconventional phenomena induced by spin-orbit splitting of degenerated bands and orbitals. In combination with a non-centrosymmetric crystal structure, the resulting asymmetric spin-orbit coupling (ASOC) gives rise to spinmomentum coupled electronic structures. Appearance of superconductivity or strong electronic correlations within these electronic structures could lead to nontrivial phases. Accordingly, $Ln Ir_2 As_2$ (Ln =La and Ce) in the CaBe₂Ge₂-type structure are promising systems because of the presence of the 5d-orbital element as well as of the lack of local inversion symmetry on each sublayer in the unit cell. Here, we present studies on single crystals of LaIr₂As₂ and CeIr₂As₂. We discover superconductivity in $LaIr_2As_2$ with a transition temperature T_c = 1.5 K. The Sommerfeld coefficient is $\gamma_0 \sim 9 \text{ mJ/mol-} \text{K}^2$, implying weak electronic correlations. CeIr₂As₂, on the other hand, shows enhanced effective mass due to the Kondo interactions between the $\rm Ce^{3+}$ magnetic moments and itinerant electrons. Below 5 K, the specificheat C/T increases with decreasing T to reach ~ 350 mJ/mol-K² at 0.5 K, revealing non-Fermi liquid character. We discuss the physical properties of these compounds in detail, in view of the possible ASOC.

TT 34.5 Wed 10:30 HSZ 204

Quasiparticle bands in the locally non-centrosymmetric heavy-fermion CeRh₂As₂ — •ÉVRARD-OUICEM ELJAOUHARI^{1,2}, SÉBASTIEN BURDIN², and GERTRUD ZWICKNAGL¹ — ¹Institut für Mathematische Physik, Technische Universität Braunschweig, Germany — ²LOMA, Université de Bordeaux, France

In the study of heavy-fermion materials, non-centrosymmetric ones have gained much interest in the past decade. Indeed, their lack of inversion symmetry in combination with strong spin-orbit coupling (SOC) and magnetic interactions can lead to the emergence of novel phenomena such as unvoncentional superconductivity and quantum phase transitions.

Of particular significance is the new non-centrosymmetric heavyfermion $CeRh_2As_2$ for which some interesting properties have been reported. For example, measurements have shown the existence of a quasi-quartet crystal electric field (CEF) ground state which would normally not be expected in a tetragonal system. Also and as for other non-centrosymmetric superconductors, a Rashba-type SOC which leads to the splitting of the Fermi surface into two and to the possibility of mixing singlet-triplet superconducting states is expected.

In order to get deeper understanding of this compound and its properties, a realistic modeling of its electronic structure is needed. In this talk we present our results on the quasiparticle bands of $CeRh_2As_2$ which have been calculated thanks to the Renormalised Band method which proceeds from a relativistic description of the electronic structure and accounts for CEF effects and for the mass renormalisation.

TT 34.6 Wed 10:45 HSZ 204

CeRu₂P₂ and CeCo₂P₂: Single Crystal Growth Method and Magnetic Properties — •FABIAN FELDMANN, MARIUS PETERS, JO-HANNES HELLWIG, KRISTIN KLIEMT, and CORNELIUS KRELLNER — Physikalisches Institut Goethe Universität Frankfurt/Main

 $\rm CeT_2P_2$ (T = Co, Ru) are rare-earth ternary phosphides with tetragonal ThCr_2Si_2 -type crystal structure. CeRu_2P_2 is an intermediate valent system [1],[2] and CeCo_2P_2 is an antiferromagnet with a rather high Néel temperature T_N = 440 K [3], most likely due to an interplay of 3d and 4f magnetism, although Ce is close to a non-magnetic Ce⁴⁺ state.

Here, we present the high-temperature metal-flux technique that was used to obtain millimeter-sized single crystals. Furthermore, we show magnetic measurements for both systems. $CeCo_2P_2$ shows anisotropic behavior above the ordering temperature, which is unexpected for itinerant 3d magnetism. $CeRu_2P_2$ as a reference system without the d magnetism of Co also shows anisotropic behavior and may indicate that $CeCo_2P_2$ also exhibits some remaining Ce 4f magnetism [4].

[1] A. Amorese et al., Phys. Rev. B **93**, 165134 (2016)

[2] T. Fujiwara et al., J. Phys.: Conf. Ser. 273, 012112 (2011)

[3] Y. Tian et al., Physica B **512**, 75 (2017)

[4] K. Kliemt et al., Cryst. Res. Technol., 1900116 (2019)

TT 34.7 Wed 11:00 HSZ 204

Orientation of ground-state orbital in CeCoIn5 and CeRhIn5 — •MARTIN SUNDERMANN^{1,2}, ANDREA AMORESE^{1,2}, FABIO STRIGARI¹, BRETT LEEDAHL², LIU HAO TJENG², MAURITS W. HAVERKORT³, HLYNUR GRETARSSON^{4,2}, HASAN YAVAŞ⁴, MARCO MORETTI SALA⁵, ERIC D. BAUER⁶, PRISCILA F. S. ROSA⁶, JOE D. THOMPSON⁶, and ANDREA SEVERING^{1,2} — ¹2. Physikalisches Institut, Universität zu Köln — ²Max Planck Institut für Chemische Physik fester Stoffe, Dresden — ³Institut für Theoretische Physik, Universität Heidelberg — ⁴PETRA III, Deutsches Elektronen-Synchrotron (DESY), Hamburg — ⁵European Synchrotron Radiation Facility (ESRF), Grenoble, Frankreich — ⁶Los Alamos National Laboratory, New Mexico, USA

We present core-level non-resonant inelastic x-ray scattering (NIXS) data of the heavy fermion compounds CeCoIn₅ and CeRhIn₅ measured at the Ce $N_{4,5}$ -edges. The higher than dipole transitions in NIXS allow determining the orientation of the Γ_7 crystal-field ground-state orbital within the unit cell. The crystal-field parameters of the CeMIn₅ compounds and related substitution phase diagrams have been investigated in great detail in the past; however, whether the ground-state wave function is the Γ_7^+ (x^2-y^2) or Γ_7^- (xy orientation) remained undetermined. We show that the Γ_7^- doublet with lobes along the (110) direction forms the ground state in CeCoIn₅ and CeRhIn₅. A comparison is made to the results of existing DFT+DMFT calculations.

15 min. break.

TT 34.8 Wed 11:30 HSZ 204

Investigation of Ce-based Materials with Multiple Inequivalent Kondo-sites. — JARDOSLAV VALENTA¹, PETR OPLETAL¹, JAN FIKÁČEK¹, ELEN DUVERGER NEDELLEC¹, JIŘÍ POSPÍŠIL¹, SHINSAKU KAMBE², HIRONORI SAKAI², YO TOKUNAGA², RUSSEL E WALSTEDT³, ROBERT KÜCHLER⁴, JACINTHA BANDA⁴, MANUEL BRANDO⁴, and •JEROEN CUSTERS¹ — ¹Dept. of Condensed Matter Physics, Charles University, Ke Karlovu, 5, 121 16 Praha, Czech Republic — ²Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan — ³Physics Department, The University of Michigan, Ann Arbor, MI 48109, USA — ⁴Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, D-01187 Dresden, Germany

The vast majority of heavy fermion compounds investigated in close proximity to a magnetic quantum phase transition exhibit only one crystallographic site for the Rare Earth or Actinide ion. Here we present results on ongoing research on several Ce–based compounds with multiple Ce-sites. Recent ¹¹⁵In NQR/NMR results on Ce₃PtIn₁₁ which has two inequivalent Ce-sites, show evidence for two quantum critical points. Each can be associated with a particular Ce-site. Our investigation on a series of $(Ce_{1-x}La_x)_3Al_{11}$ reveals that, up to x = 0.25, we substitute La for Ce on the Ce2 site only. As the parent compound Ce₃Al₁₁ has 2 sites (Ce1: 2 atoms/f.u.; Ce2: 1 atom/f.u.) we thus can follow the evolution of removing one Kondo-site step by step. Finally we will present our first results on Ce₃Rh₅Ge₇. This novel compound harbors 3 inequivalent Ce-sites.

TT 34.9 Wed 11:45 HSZ 204

Valence effect in the thermopower of Eu systems — •ULRIKE STOCKERT¹, SILVIA SEIRO^{2,1}, NUBIA CAROCA-CANALES¹, ELENA HASSINGER¹, and CHRISTOPH GEIBEL¹ — ¹MPI for Chemical Physics of Solids, Dresden — ²Institute for Solid State Research, IFW, Dresden EuIr₂Si₂ and EuNi₂P₂ have been classified as valence-fluctuating (VF) materials with a strongly temperature-dependent Eu valence. At low temperature *T* the effective charge carrier masses are significantly en-

hanced due to hybridization between the Eu 4f and the conduction electron states. The relative importance of hybridization and valence fluctuations in Eu-based VF systems is not yet clear and a topic of current interest.

We present thermal conductivity and thermopower data for EuIr₂Si₂ and EuNi₂P₂ in the temperature range beween 2 K and 300 K. The thermal conductivities of both materials are conventional with differences arising due to different crystal quality. By contrast, the thermopowers of EuIr₂Si₂ and EuNi₂P₂ exhibit large values and a characteristic *T* dependence that cannot be explained satisfactorily by simple hybridization models. Instead, we may describe the thermopower by taking into account the temperature-dependence of the Eu valence, which leads to additional thermopower contributions due to variations in the chemical potential. These findings corroborate the relevance of the valence fluctuations for understanding the properties of EuIr₂Si₂ and EuNi₂P₂ at intermediate temperatures.

TT 34.10 Wed 12:00 HSZ 204 Crystal growth of the valence fluctuating system EuPd₂Si₂ — •MARIUS PETERS, KRISTIN KLIEMT, EUNHYUNG CHO, DOAN-MY TRAN, FRANZ RITTER, and CORNELIUS KRELLNER — Physikalisches Institut, Goethe-Universität Frankfurt

The study of collective phenomena raising from enhanced coupling between electrons and phonons is focussed on materials exhibiting phase transitions involving both electronic and lattice-degrees of freedom. One system providing such a strongly coupled phase transition is EuPd₂Si₂ of the ThCr₂Si₂ structural type, showing a temperature induced valence transition of europium between the energetically vicinal valence states Eu^{2+} and Eu^{3+} at about 170K [1]. First reports on the synthesis of single crystals came up only recently [2], but a deep investigation of the valence transition in this compound is still missing.

We approached the ternary Eu-Pd-Si system using differential thermal analysis to map the local composition phase diagram. We used the Bridgman and the Czochralski method fort he successful growth of mm-sized single crystals of EuPd₂Si₂. In this contribution we will present chemical and structural characterization of these crystals and some preliminary physical measurements around the valence transition.

E. V. Sampathkumaran et al., Journal of Physics C14, L237 (1981).
Y. Onuki et al., Philosophical Magazine 97, 3399 (2017).

TT 34.11 Wed 12:15 HSZ 204 Crystal growth and characterization of isotope-pure YbRh₂Si₂ (¹⁷¹Yb, ¹⁷³Yb, ¹⁷⁴Yb) — •SEBASTIAN WITT¹, SU-SANNA RONGSTOCK¹, THANH DUC NGUYEN¹, MANUEL BRANDO², and CORNELIUS KRELLNER¹ — ¹Physikalisches Institut, Goethe University, Frankfurt, Germany — ²Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany

A central question in condensed matter research concerns the interplay between quantum criticality and unconventional superconductivity in strongly correlated electron systems such as heavy-electron systems. Recently, superconductivity was also discovered in the quantumcritical material YbRh₂Si₂ at 2mK [1]. So far the interplay between electronic and nuclear moments of Yb and its impact on the superconductivity is not settled. For that reason, it is essential to investigate YbRh₂Si₂ samples with a well-defined Yb nuclear spin.

In this talk, we report the crystal growth with the entire range of nuclear spin number in the single crystals (¹⁷¹Yb: I = 1/2, ¹⁷³Yb: I = 5/2, ¹⁷⁴Yb: I = 0). For the crystal growth we developed a new setup for small masses, especially for the metallothermic reduction of metallic Yb from Yb₂O₃. Besides the single crystal characterization (Laue, PXRD) we will present measurements of the resistivity and isotopic composition. To investigate the influence of nuclear spin on the electronic degrees of freedom, we will show the heat capacity around the antiferromagnetic transition at 70mK.

[1] E. Schuberth et al., Science, 351, 485-488 (2016).

TT 34.12 Wed 12:30 HSZ 204 Extremely weak magnetic exchange in metallic 4f-electron system leads to enormous magnetocaloric effect — •THOMAS GRUNER¹, JIASHENG CHEN¹, DONGJIN JANG², JACINTHA BANDA³, CHRISTOPH GEIBEL³, MANUEL BRANDO³, and MALTE GROSCHE¹ — ¹Cavendish Laboratory, University of Cambridge, UK — ²KRISS, Daejeon, Republic of Korea — ³MPI CPfS, Dresden, Germany

Traditional cryogenic demagnetisation refrigerators for the temperature range $40\,{\rm mK}< T<2\,{\rm K}$ use hydrated paramagnetic salts as cooling

agents. This often imposes significant restrictions on equipment designs due to the weak thermal conductivity and the need for hermetic sealing of these insulating materials. Recently, we showed that certain Yb-based metallic materials provide attractive alternatives [1]. In a search for even more appropriate materials we investigated a number of Heusler- and half-Heusler compounds and studied their structural, magnetic, transport and magnetocaloric properties, enabling us to select a particularly promising Yb system.

Our measured data evidence metallic behaviour, the absence of superconductivity and a stable trivalent Yb³⁺ state, without any sign of a significant Kondo interaction. This new compound can be easily brought into shape, making the production of powerful cooling pills much simpler compared to commonly used paramagnetic salt or garnet refrigerants. By performing different demagnetisation tests, we demonstrated the feasibility of a simple, economical and durable alternative for traditional cooling devices for temperatures down to 120 mK. [1] Jang, Gruner et al.; Nature Commun.; **6**, 8680 (2015)

TT 34.13 Wed 12:45 HSZ 204

Visualizing the Kondo lattice crossover in an Ybbased heavy fermion system with Compton scattering — •MONIKA GÜTTLER¹, KURT KUMMER², AKIHISA KOIZUMI³, KRISTIN KLIEMT⁴, CORNELIUS KRELLNER⁴, CLEMENS LAUBSCHAT¹, and DENIS VYALIKH^{5,6} — ¹IFMP, TU Dresden, Germany — ²ESRF, Grenoble, France — ³Graduate School of Material Science, University of Hyogo, Japan — ⁴Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Germany — ⁵DIPC, San Sebastian, Spain — ⁶IKERBASQUE, Bilbao, Spain

With the breakdown of coherent Kondo scattering with rising temperature, the Fermi surface (FS) in rare earth Kondo lattices is expected to transition from the large FS counting the 4f moments, which form entangled quasiparticles with huge masses with the conduction states, to the small FS with decoupled and localized 4f moments. A direct observation of this transition with temperature has however remained elusive because conventional probes of the FS in Kondo lattices require high magnetic fields which might reconstruct the FS or cannot work reliably at elevated temperatures. Using high-resolution Compton scattering we overcome these limitations and show that the FS topology in the prototypical Kondo lattice YbRh₂Si₂ undergoes pronounced changes between 14K and 300K in zero magnetic field. We present clear evidence for a largely restored small FS at room temperature which could not be observed before. Our results set an upper bound for the relevant energy scale of the complex Kondo crossover phenomenon in YbRh₂Si₂.