DPG Phi
Verhandlungen
Verhandlungen
DPG

Hannover 2020 – scientific programme

The DPG Spring Meeting in Hannover had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

MO: Fachverband Molekülphysik

MO 9: Femtosecond Spectroscopy I

MO 9.7: Talk

Wednesday, March 11, 2020, 12:30–12:45, f102

High-intensity effects in two-dimensional electronic spectroscopy — •Marcel Binz1, Lukas Bruder1, Lipeng Chen2, Maxim F. Gelin3, Wolfgang Domcke4, and Frank Stienkemeier11Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany — 2Institute of Chemical Sciences and Engineering, EPFL Lausanne, 1015 Lausanne, Switzerland — 3School of Science, Hangzhou Dianzi University, 310018 Hangzhou, China — 4Department of Chemistry, Technical University of Munich, 85747 Garching, Germany

Usually, two-dimensional electronic spectroscopy (2DES) experiments are performed in the regime where perturbation theory holds and the signal can be described by the third-order polarization. However, to measure nonlinear signals, higher laser intensities are generally of advantage as the signal scales with higher order of the incident light fields. Non-perturbative theoretical description of 2DES experiments indicate that compromising effects, such as peak shape distortions and phase shifts, should occur at laser intensities beyond the perturbative limit [1]. Here, we explore these high-intensity effects by studying a simple, clean model system comprising of a rubidium atom vapor in collinear 2DES experiments, supported by non-perturbative numerical simulations.

[1] L. Chen et al., J. Chem. Phys. 147, 234104 (2017)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Hannover