DPG Phi
Verhandlungen
Verhandlungen
DPG

Hannover 2020 – scientific programme

The DPG Spring Meeting in Hannover had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 15: Quantum gases (Bosons) II

Q 15.5: Talk

Tuesday, March 10, 2020, 12:15–12:30, e214

Non-equilibrium dissipative dynamics of interacting bosons in an optical lattice — •Jens Benary1, Marvin Röhrle1, Alexandre Gil Moreno1, Christian Baals1,2, Jian Jiang1, and Herwig Ott11Department of Physics and OPTIMAS research center, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany — 2Graduate School Materials Science in Mainz, 55128 Mainz, Germany

We experimentally investigate a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate loaded in a 1-D optical lattice. Engineered losses on one site act as a local dissipative process. The source of these losses is an electron beam, which we can also use to image the system (SEM) and monitor the losses. Tunneling from the neighboring sites makes up the driving force. Decreasing the tunnel coupling J makes the system cross from a superfluid state to a resistive state. For intermediate values of J, the system shows bistable behavior, with coexistence of a superfluid and an incoherent branch. Studying the individual realizations for single experimental runs we see a digital behavior in the filling of the lossy site, changing from the resistive to the superfluid state within a few tunneling times. We study the dynamics towards a steady state averaged over many experimental runs, finding a critical slowing down and intermediate filling levels of the lossy site, indicating the presence of a non-equilibrium first order quantum phase transition.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Hannover