MS 5: Precision Mass Spectrometry II

Time: Tuesday 15:15-16:00

Invited Talk MS 5.1 Tue 15:15 f128 Experiments with multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) at TRIUMF and GSI/FAIR — •CHRISTINE HORNUNG¹, THE FRS ION CATCHER COLLABORATION^{1,2}, and THE TITAN COLLABORATION³ — ¹II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany — ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany — ³TRIUMF, Vancouver, Canada

At the JLU Giessen, MR-TOF-MS have been developed for the TITAN experiment at TRIUMF and for the FRS/Super-FRS at GSI/FAIR. The systems incorporate several novel and unique concepts. The design enables world class performance, including a mass resolving power up to 1,000,000, mass accuracies down to $6 \cdot 10^{-8}$ and a background suppression of grater than 7 orders of magnitude. Mass measurements of neutron-deficient Yb and Tm isotopes have been performed across the N = 82 shell closure using TITAN's MR-TOF-MS. With the MR-TOF-MS of the FRS Ion Catcher at the FRS the masses of neutron-deficient ¹²⁴Xe projectile fragments in the vicinity of ¹⁰⁰Sn have been measured, including the ¹⁰¹In ground state. Two new isomeric states have been discovered in ⁹⁷Ag and ¹⁰¹In. A novel method for the measurement of half-lives and decay branching ratios with the FRS Ion Catcher has been developed and experimentally applied.

 $MS \ 5.2 \ \ Tue \ 15:45 \ \ f128$ High-precision mass spectrometry of superheavy elements at SHIPTRAP: latest experiments, status and performances of the setup. — •PIERRE CHAUVEAU FOR THE SHIPTRAP COLLABORATION^{1,2}, BRANKICA ANDELIĆ^{1,3}, OLESYA BEZRODNOVA^{4,5}, KLAUS BLAUM⁶, MICHAEL BLOCK^{1,2,7}, STANISLAV CHENMAREV^{5,7}, PREMADITYA CHHETRI^{1,2}, CHRISTOPH

Location: f128

E. DÜLLMANN^{1,2,7}, MARTIN EIBACH^{2,8}, JULIA EVEN³, SERGEY ELISEEV⁶, PAVEL FILIANIN⁶, FRANCESCA GIACOPPO^{1,2}, STEFAN GÖTZ^{1,2,7}, MANUEL GUTIÉRREZ⁹, FRANK HERFURTH², FRITZ-PETER HESSBERGER^{1,2}, NASSER KALANTAR-NAYESTANAKI³, OLIVER KALEJA^{2,6,7}, JADAMBAA KHUYAGBAATAR^{1,2}, JACQUES J.W. VAN DE LAAR^{1,7}, MUSTAPHA LAATIAOUI¹, STEFFEN LOHSE^{1,7}, NATALIA MARTYNOVA^{4,5}, ENRIQUE MINAYA RAMIREZ¹⁰, ANDREW MISTRY^{1,2}, TOBIAS MURBÖCK², YURI NOVIKOV^{4,5}, SEBASTIAN RAEDER², DANIEL RODRIGUEZ⁹, FABIAN SCHNEIDER^{1,7}, LUTZ SCHWEIKHARD⁸, PETER THIROLF¹¹, and ALEXANDER YAKUSHEV^{1,2} — ¹HI Mainz — ²GSI Darmstadt — ³Univ. Groningen — ⁴SPbSU St. Petersburg — ⁵PNPI KI Gatchina — ⁶MPIK Heidelberg — ⁷JGU Mainz — ⁸Univ. Greifswald — ⁹Univ. de Granada — ¹⁰IPN Orsay — ¹¹LMU München

Mass measurements in the very heavy and superheavy regions of the nuclear chart are crucial to understand the increased stability of certain superheavy elements and can be used as anchor points for nuclear models attempting to pinpoint the position of the island of stability. In the latest experimental campaigns with the SHIPTRAP setup, ground states masses and excitation energies of low-lying isomers in nobelium (Z = 102), lawrencium (Z = 103) and rutherfordium (Z = 104) isotopes have been measured with very high accuracy. The Phase-Imaging Ion-Cyclotron-Resonance technique has been successfully applied for such challenging measurements characterized by the very low ion production rate and number of collected events. These results have been accomplished thanks to careful investigations and improvements of the efficiency of the SHIPTRAP setup, paving the way for the first direct high-precision mass spectrometry of even heavier and more exotic nuclides, including dubnium (Z = 105) isotopes. In this contribution, an overview on the efficiency of the setup as well as a summary of recent experimental campaigns will be given.