Parts | Days | Selection | Search | Updates | Downloads | Help

CPP: Fachverband Chemische Physik und Polymerphysik

CPP 13: Complex Fluids and Soft Matter 3 (joint session DY/CPP)

CPP 13.3: Talk

Tuesday, March 23, 2021, 15:10–15:30, DYc

Controlling Elastic Turbulence — •Reinier van Buel and Holger Stark — Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

Controlling the flow patterns of viscoelastic fluids is extremely challenging due to their inherent non-linear and time-dependent properties. These complex fluids exhibit transitions from laminar to turbulent flows, which is useful for heat and mass transport in liquids at the micron scale [1], whereas in Newtonian fluids transport is dominated by diffusion. Turbulent viscoelastic flows show similar properties as their counterparts in Newtonian fluids [1,2] and consequently the observed flow pattern is called elastic turbulence [1]. It occurs in shear flow for increasing Weissenberg number Wi, the product of polymer relaxation time and shear rate.

Numerically solving the Oldroyd-B model in a two-dimensional Taylor-Couette geometry, we have identified and described the supercritical transition to turbulent flow at a critical Weissenberg number [2]. Here, we demonstrate that elastic turbulence can be controlled by a time-modulated shear rate. The order parameter measuring the strength of turbulence continuously goes to zero with increasing modulation frequency or Deborah number De. It ultimately vanishes via a supercritical transition, where flow then becomes laminar. Moving closer to the critical Weissenberg number, smaller modulation frequencies are sufficient to induce laminar flow.

[1] A. Groisman and V. Steinberg, Nature 405, 53 (2000).

[2] R. Buel, C. Schaaf, H. Stark, Europhys. Lett. 124, 14001 (2018).

100% | Screen Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2021 > BPCPPDYSOE21