

The Higgs boson: a glimpse under the peak

Virtuelle DPG-Frühjahrstagung 2021 (Dortmund)

Matthias Schröder March 18, 2021

GEFÖRDERT VOM

Fundamental question:

If the electron was massless, there would be no stable atoms!

How do particles get mass?

Interaction with Higgs field $\phi \rightarrow$ particle mass

The Higgs potential

Universe at minimum of $V(\phi)$

Excitation of ϕ around minimum \rightarrow Higgs boson H (necessary consequence!)

The Standard Model Higgs sector

Special, unlike anything probed before

The Higgs boson: a special particle

Scalar particle (spin 0, CP even)

Couples in a unique way to other SM particles: to bosons $\propto m_V^2$ to fermions $\propto m_f$

Once Higgs-boson mass is known: all other properties and interactions precisely predicted

Excellent probe of the Higgs sector and window to new physics

(Complementary approach: direct search for additional Higgs bosons or forbidden decays)

Higgs-boson production at the LHC

(for $m_{\rm H}~=~125~{\rm GeV},~13~{\rm TeV})$

Matthias Schröder

Branching ratios ($m_{\rm H} = 125 \,{\rm GeV}$)

$H \rightarrow \gamma \gamma$ candidate event

$H \rightarrow \gamma \gamma$ candidate event

$H \rightarrow \gamma \gamma$ candidate event

${\rm H} ightarrow \gamma \gamma$ candidate event

 $H \rightarrow b\overline{b}$ candidate event

All detector components needed in Higgs-boson analysis

 $H \rightarrow \gamma \gamma$ candidate event

All detector components needed in Higgs-boson analysis

Continuous progress in analysis methods, machine-learning techniques have become a key tool

Where do we stand?

- 1. Measuring properties and couplings of the Higgs boson
- 2. Direct measurement of Yukawa interactions
- 3. Probing the Higgs potential
- 4. What is next?

ATLAS & CMS results selected without particular preference, typically similar results by respective other experiment

High-resolution channels $H \rightarrow ZZ^* \rightarrow 4\ell$ & $H \rightarrow \gamma\gamma$

Electrons, muons, photons measured with excellent resolution ($O(1 \%) p_T$ resolution) Higgs-boson candidates can be reconstructed with high precision

 4ℓ & $\gamma\gamma$ channels have driven discovery and subsequent measurements of the Higgs boson

What we measure

What we measure

number of events

What we measure

GeV 120 Data ATLAS ggF+bbH ZZ* $ZZ^* \rightarrow 4I$ Events/2 13 TeV, 139 fb VBF tXX, VVV 100 VH Z+jets, tī ttH+tH /// Uncertainty 80 60 40 20 110 120 130 140 150 160 m₄₁ [GeV]

 $\sigma \times \mathcal{B}$

What we measure (actually)

 $\sigma\times\mathcal{B}\times\alpha\times\epsilon$

What we measure

What we measure

signal strength
$$\mu = \frac{\sigma \times B}{\sigma_{SM} \times B_{SM}}$$

What we measure

signal strength
$$\mu = \frac{\sigma \times B}{\sigma_{SM} \times B_{SM}}$$

μ depends on the coupling strength

signal strength
$$\mu = \frac{\sigma \times B}{\sigma_{SM} \times B_{SM}}$$

μ depends on the coupling strength

Always measure production \times decay:

ightarrow cannot unambiguously infer coupling from one measurement

Signal strength measured in various different channels \rightarrow combine to infer information on couplings

Signal strength measured in various different channels \rightarrow combine to infer information on couplings

Modify SM Higgs tree-level couplings

Signal strength measured in various different channels \rightarrow combine to infer information on couplings

Modify SM Higgs tree-level couplings

н

Kt

Signal strength measured in various different channels \rightarrow combine to infer information on couplings

Modify SM Higgs tree-level couplings

Indirect: need to make model assumptions Which particles in the loops? Unmeasured decays?

Scaling of coupling strength with particle mass

Excellent agreement with SM expectation over 3 orders of magnitude

Beyond inclusive measurements

Beyond inclusive measurements

New physics might modify kinematics
Beyond inclusive measurements

New physics might modify kinematics

Measure differentially!

Target different production modes

In each category: measure cross section

Target different production modes

In each category: measure cross section

н

q

25'

Target different production modes and kinematic regions

In each category: measure cross section

Target different **production modes** and **kinematic regions** In each category: measure cross section

Target different **production modes** and **kinematic regions** In each category: measure cross section

Important step to **reduce model dependence** in Higgs-boson measurements

Designed for combination across channels and experiments

Differential cross sections

Measurement of specific observables, e.g. $p_T(H)$ Corrected to particle level via **unfolding**

Model-independent measurement

in specific Higgs-boson decay channel

Can be directly compared to theory predictions without detector modelling

Evolution of Higgs-boson measurements

Coupling constraints from differential cross section

 $p_{\rm T}({\rm H})$ in ${\rm H} \rightarrow \gamma \gamma$

Sensitive to

- new heavy particles in the loop
- other Higgs-boson couplings

Constraints on couplings not-yet directly accessible

indirect sensitivity to charm-Higgs coupling complementary to direct searches

Interpretation in Effective Field Theories (EFT)

Parameterise all low-energy effects of new physics at higher scales New couplings of Higgs boson to SM particles

Effect on rate + shape of measured distributions Differential measurements important!

Constraints e.g. from $H \rightarrow 4\ell/\gamma\gamma$ channels and combination of STXS measurements

[EPJC 80 (2020) 10, 957] [CMS-PAS-HIG-19-009] [ATLAS-CONF-2020-053] [CMS-PAS-HIG-19-005]

Hot topic: techniques evolve as more data is analysed

1. Measuring properties and couplings of the Higgs boson

2. Direct measurement of Yukawa interactions

- 3. Probing the Higgs potential
- 4. What is next?

Direct measurement of Yukawa interactions

LHC Run 2: **Observation** of couplings to 3rd-generation fermions by ATLAS and CMS

First direct measurement of Yukawa interactions

Milestone in probing the Higgs sector and understanding how fermions acquire mass

Direct measurement of Yukawa interactions

LHC Run 2: **Observation** of couplings to 3rd-generation fermions by ATLAS and CMS

First direct measurement of Yukawa interactions

Milestone in probing the Higgs sector and understanding how fermions acquire mass

Direct measurement of Yukawa interactions

First direct measurement of Yukawa interactions

Milestone in probing the Higgs sector and understanding how fermions acquire mass

Coupling to top quarks: ttH production

First ttH(bb) measurement differential in $p_T(H)$

 $\begin{array}{l} \text{Combined measurement of } t\bar{t}H + tH \text{ production} \\ \rightarrow \text{ sensitivity to sign of top-Higgs coupling} \end{array}$

Coupling to bottom quarks: $H \rightarrow b\overline{b}$

Dominant decay channel but huge QCD-multijet background

Best sensitivity: VH channel, has driven observation

a H

Coupling to bottom quarks: $\mathbf{H} \rightarrow \mathbf{b}\overline{\mathbf{b}}$

Dominant decay channel but huge QCD-multijet background

Best sensitivity: VH channel, has driven observation

Other channels also accessible, e.g. boosted ggF or VBF

New approaches: VBF+ γ (H γ forbidden in ggF)

Significance 1.3 σ (1.0 exp.)

CP structure of Yukawa couplings

Yukawa interaction: CP-odd component at tree-level in principle allowed

$$\mathcal{L}(\mathsf{Hff}) = -\frac{m_{\mathsf{f}}}{v}\overline{\psi}(\kappa_{\mathsf{f}} + i\tilde{\kappa}_{\mathsf{f}}\gamma_{\mathsf{5}})\psi\mathsf{H}$$

CP-even/CP-odd Yukawa coupling SM: $\kappa_{\rm f}=$ 1, $\tilde{\kappa}_{\rm f}=$ 0

 \rightarrow can modify kinematics of decay products and associated particles

$H \rightarrow \tau \tau$ and tt H (H $\rightarrow \gamma \gamma/4\ell$): first test of CP structure of Higgs-fermion couplings Pure CP-odd hypothesis excluded at 3 σ level

[CMS-PAS-HIG-20-006] [PRL 125 (2020) 6, 061802] [PRL 125 (2020) 6, 061801] [CMS-PAS-HIG-19-009]

The Higgs boson: a glimpse under the peak

The next generation: $\mathbf{H} \rightarrow \mu \mu$

Rare decay with $\mathcal{B}\approx 2\cdot 10^{-4}$ + large irreducible background from Drell-Yan production

The next generation: $\mathbf{H} \rightarrow \mu \mu$

Another milestone in probing the Yukawa sector First evidence that the Higgs boson couples to 2nd generation fermions

Large **background from QCD** Identification of c-quark jets critical

Limit $\sigma(VH)\mathcal{B}(H
ightarrow c\overline{c}) <$ 70 (37 exp.) imes SM

(with partial Run 2 dataset)

Direct measurement of Yukawa interactions: status

 \checkmark observation

Direct measurement of Yukawa interactions: status

 \checkmark observation

Direct measurement of Yukawa interactions: status

- 1. Measuring properties and couplings of the Higgs boson
- 2. Direct measurement of Yukawa interactions
- 3. Probing the Higgs potential
- 4. What is next?

Higgs-boson self-coupling

Self-coupling λ related to the shape of the Higgs potential:

- o responsible for electroweak symmetry breaking
- implications for the stability of the vacuum

Measuring λ is a key objective of the remaining LHC programme!

$$V(\mathsf{H}) = -\frac{1}{2}m_{\mathsf{H}}\mathsf{H}^{2} + \frac{\lambda v\mathsf{H}^{3}}{4} + \frac{1}{4}\lambda\mathsf{H}^{4}$$

Higgs-boson pair (HH) production best direct probe of self-coupling

Where do we look for HH production?

Searches in different HH final states, typically at least one H ightarrow bb decay

Where do we look for HH production?

Searches in different HH final states, typically at least one H ightarrow bb decay

Constraints on Higgs-boson self-coupling

Limits on HH cross-section \rightarrow limits on self-coupling (assuming $\kappa_t = 1$)

Self-coupling from single-Higgs production

Self-coupling from single-Higgs production

- 1. Measuring properties and couplings of the Higgs boson
- 2. Direct measurement of Yukawa interactions
- 3. Probing the Higgs potential
- 4. What is next?

A bright future for Higgs-boson measurements!

Expected performance at the High Luminosity LHC:

- Precision of coupling measurements at few-% level
- $\circ~$ Not-yet discovered decays: Observation of H $\rightarrow \mu\mu$ and H \rightarrow Z γ
- $\circ\,$ Testing the shape of the Higgs potential: HH production at 4 σ significance

Projections based on the current state-of-the-art We will work hard to do even better!

The Higgs boson is special! Has properties and interactions never seen before

Unprecedented precision with large LHC Run 2 datasets challenging the SM

- Differential measurements
- Direct measurements of Yukawa interactions
- Starting to probe the Higgs potential

Important contributions by German institutes

Much more data to come: truly exciting Higgs-physics times ahead of us!

The Higgs boson: a special particle!

