Location: P

A 8: Collisions, scattering, and correlation phenomena

Time: Tuesday 16:30–18:30

A 8.1 Tue 16:30 P

Near-adiabatic collisions of Xe54+ +Xe at the ESR Storage ring — •SIEGBERT HAGMANN¹, PIERRE-MICHEL HILLENBRAND^{1,2}, JAN GLORIUS¹, UWE SPILLMANN¹, YURI LITVINOV¹, YURI KOZHEDUB⁶, ILYA TUPITSYN⁶, MICHAEL LESTINSKY¹, ALEXANDER GUMBERIDZE^{1,3}, SERGIJ TROTSENKO^{1,4}, MARKUS STECK¹, ROBERT GRISENTI^{1,2}, NIIKOS PETRIDIS^{1,2}, SHAHAB SANJARI¹, CARSTEN BRANDAU¹, ESTER MENZ¹, TIMO MORGENROTH¹, and THOMAS STOEHLKER^{1,4,5} — ¹Helmholtzzentrum GSI, Darmstadt — ²Inst. f. Kernphysik, Univ. Frankfurt — ³EMMI GSI-Darmstadt — ⁴Helmholtz Inst Jena — ⁵Inst.f.Quantenelektronik Univ Jena — ⁶Dep Phys. St Petersburg State Univ

We study multi-electron transfer processes in near adiabatic collisions of bare, H-like and He-like Xe54+*52+ ions with Xe atoms and measure emitted target- and projectile K- and L- x rays in coincidence with projectiles which have captured 3 to 6 electrons, and with time of flight of recoiling Xe target ions. Shells beyond the projectile P shell are significantly populated; K x rays from high n shells indicate that outer shell transfer dominantly ends in low 1 states, decaying directly to the K shell. Single capture favors capture into the 2p3/2 over the 2p1/2 state and multiple capture n*3 the 2p1/2 populates than the 2p3/2 state. For the target K x ray spectra, we observe that the ratio K- satellite/K-hypersatellite yields is enhanced over the predictions by a relativistic theory.

A 8.2 Tue 16:30 P

Atom-molecule and molecule-molecule collisions in NaK quantum gases — •Philipp Gersema¹, Mara Meyer zum Alten Borgloh¹, Kai Konrad Voges¹, Torsten Hartmann¹, Leon Karpa¹, Alessandro Zenesini², and Silke Ospelkaus¹ — ¹Leibniz Universität Hannover — ²Universitä di Trento

Ultracold polar ground-state molecules provide an excellent platform for the study of atom-molecule and molecule-molecule collisions in the quantum regime. For endoergic collision channels, it has been suggested that long-lived collisional complexes form which can then be removed from the trap by additional mechanisms such as light-excitation.

Here, we investigate atom-molecule and molecule-molecule collisions in quantum gases of 23 Na³⁹K. We probe photo-induced loss of fourbody complexes forming in molecule-molecule collisions in chopped optical dipole traps and find the lower limit of the complex lifetime to be much larger than the lifetime derived from RRKM theory.

We also present studies of atom-molecule collisions including loss between molecules and $^{39}{\rm K}$ atoms in several spin states.