Mass Spectrometry Division Fachverband Massenspektrometrie (MS)

Michael Block Helmholtz-Institut Mainz Staudingerweg 18 55099 Mainz M.Block@gsi.de

Overview of Invited Talks and Sessions

(Lecture halls H2 and H3; Poster P)

Invited Talks

MS 1.1	Mon	10:45-11:15	H3	Precision Mass Measurements on Light Nuclei: The Deuteron's Atomic
MS 2.1	Mon	14:00-14:30	H3	Mass — •SASCHA RAU Experiments with multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) at TRIUMF and GSI/FAIR — •CHRISTINE HORNUNG, THE FRS ION CATCHER COLLABORATION, THE TITAN COLLABORATION
MS 4.1	Tue	10:45 - 11:15	H2	Reaction studies with internally cold molecular ions in a storage ring — •OLDŘICH NOVOTNÝ
MS 6.1	Tue	14:00-14:30	H2	The Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy and its potential for fast and highly selective mass separation — •STEPHAN MALBRUNOT
MS 7.1	Thu	10:45-11:15	H3	The new compact, multi isotope AMS system (MILEA) at ETH Zurich - performance and applications — •MARCUS CHRISTL, SASCHA MAXEINER, ARNOLD MÜLLER, PHILIP GAUTSCHI, CHRISTOF VOCKENHUBER, HANS-ARNO SYNAL
MS 9.1	Fri	10:45-11:15	H2	Spatially resolved ultra-trace analysis of actinides on hot particles by resonant laser-SNMS — •HAUKE BOSCO, MARTIN WEISS, MANUEL RAIWA, NINA KNEIP, KLAUS WENDT, CLEMENS WALTHER
MS 9.2	Fri	11:15-11:45	H2	Multi-reflection time-of-flight mass spectrometry for cluster research — •Paul Fischer, Lutz Schweikhard

Invited talks of the joint symposium Trends in atom interferometry (SYAI)

See SYAI for the full program of the symposium.

SYAI 1.1	Mon	14:00-14:30	Audimax	Atom interferometry and its applications for gravity sensing — •FRANCK PEREIRA DOS SANTOS, LUC ABSIL, YANN BALLAND, SÉBASTIEN MERLET, MAXIME PESCHE, RAPHAËL PICCON, SUMIT SARKAR
SYAI 1.2	Mon	14:30-15:00	Audimax	Atom interferometry for advanced geodesy and gravitational wave
				observation — • Philippe Bouyer
SYAI 1.3	Mon	15:00 - 15:30	Audimax	3D printing methods for portable quantum technologies – •LUCIA
				Hackermüller
SYAI 1.4	Mon	15:30 - 16:00	Audimax	Fundamental physics with atom interferometry — \bullet PAUL HAMIL-
				TON

Invited talks of the joint symposium SAMOP Dissertation Prize 2021 (SYAD)

See SYAD for the full program of the symposium.

SYAD 1.1	Tue	10:45 - 11:15	Audimax	Attosecond-fast electron dynamics in graphene and graphene-
				based interfaces — •Christian Heide
SYAD 1.2	Tue	11:15-11:45	Audimax	About the interference of many particles — •CHRISTOPH DITTEL
SYAD 1.3	Tue	11:45 - 12:15	Audimax	Supersolid Arrays of Dipolar Quantum Droplets — •FABIAN
				Böttcher

SYAD 1.4	Tue	12:15-12:45	Audimax	Quantum Logic Spectroscopy of Highly Charged Ions – \bullet Peter
				Micke

Invited talks of the joint symposium The state of the art in actinide research (SYAR) See SYAR for the full program of the symposium.

SYAR 1.1	Wed	10:45-11:15	Audimax	Application of Inorganic Mass Spectrometry in Nuclear Forensics — •KLAUS MAYER, MARIA WALLENIUS, ZSOLT VARGA, MAGNUS HED- BERG, MICHAEL KRACHLER
SYAR 1.2	Wed	11:15-11:45	Audimax	Actinide elements and fundamental nuclear structure studies — •IAIN MOORE
SYAR 1.3	Wed	11:45-12:15	Audimax	Pushing the Limits: Detection of Long-Lived Actinides at VERA — •KARIN HAIN, MICHAEL KERN, JIXIN QIAO, FRANCESCA QUINTO, AYA SAKAGUCHI, PETER STEIER, GABRIELE WALLNER, AN- DREAS WIEDERIN, AKIHIKO YOKOYAMA, ROBIN GOLSER
SYAR 1.4	Wed	12:15-12:45	Audimax	Use of the actinides in medical research — \bullet THOMAS ELIAS COCOLIOS

Invited talks of the joint symposium Awards Symposium (SYAW)

See SYAW for the full program of the symposium.

SYAW 1.1	Wed	13:30 - 14:15	Audimax	Frequency comb spectroscopy and interferometry $-$ •NATHALIE
				Picqué
SYAW 1.2	Wed	14:15-15:00	Audimax	Capitalizing on Schrödinger — • WOLFGANG P. SCHLEICH
SYAW 1.3	Wed	15:00 - 15:45	Audimax	Quantum information processing with macroscopic objects $-$
				•Eugene Polzik

Sessions

MS $1.1 - 1.7$	Mon	10:45 - 12:45	H3	Precision Mass Measurements I
MS $2.1 - 2.5$	Mon	14:00-15:30	H3	Precision Mass Measurements II
MS $3.1 - 3.2$	Mon	16:30 - 18:30	Р	Poster
MS 4.1 - 4.5	Tue	10:45 - 12:15	H2	Storage Rings
MS 5	Tue	12:15 - 13:15	MVMS	Annual General Meeting of the Mass Spectrometry Division
MS $6.1-6.5$	Tue	14:00-15:30	H2	New Developments I
MS $7.1 - 7.6$	Thu	10:45 - 12:30	H3	Accelerator Mass Spectrometry I
MS 8.1 - 8.5	Thu	14:00-15:15	H3	Accelerator Mass Spectrometry II
MS $9.1 - 9.3$	Fri	10:45-12:00	H2	New Developments II

Annual General Meeting of the Mass Spectrometry Division

Tuesday 12:15–13:15 MVMS

- $\bullet~{\rm Bericht}$
- Wahl
- Verschiedenes

MS 1: Precision Mass Measurements I

Time: Monday 10:45–12:45

Invited TalkMS 1.1Mon 10:45H3Precision Mass Measurements on Light Nuclei:TheDeuteron's Atomic Mass — ••SASCHA RAU — Max-Planck-Institutfür Kernphysik, Saupfercheckweg 1, Heidelberg

The rest masses of many light nuclei, e.g. the proton and the deuteron are of great importance for testing our current understanding of physics as well as in metrology. Recently discussed discrepancies in light ion mass measurements, carried out at different mass spectrometers and sometimes termed "light ion mass puzzle", give further motivation for independent measurements. Here I present progress and results of LI-ONTRAP (Light ION TRAP) [1], an ion trap setup dedicated to highprecision mass measurements of light ions, which has been constructed in an MPIK-GSI-University of Mainz collaboration. We recently measured the deuteron's atomic mass by comparing the cyclotron frequencies of a single deuteron and a bare carbon nucleus, achieving a relative mass uncertainty of 8.5×10^{-12} , a factor of 2.4 more precise than the CODATA-2014 value, and revealing a 4.8σ deviation with respect to this value [2]. Together with the LIONTRAP mass measurements of the proton [1] and the HD⁺ molecular ion [2], as well as a measurement of the deuteron-to-proton mass ratio [3], this allows to determine the masses of the lightest nuclei with unprecedented precision. In this talk I will present these measurements and compare them with recent results from the spectroscopy of ro-vibrational states in HD⁺.

[1] F. Heiße et al., Phys. Rev. A 100, 022518 (2019)

[2] S. Rau *et al.* Nature **585**, p. 43-47 (2020)

[3] D. J. Fink & E. G. Myers, Phys. Rev. Lett. 124, 013001 (2020)

MS 1.2 Mon 11:15 H3

Latest results of high-precision mass measurements with Pentatrap — •KATHRIN KROMER¹, JOSÉ RAMON CRESPO LÓPEZ-URRUTIA¹, MENNO DOOR¹, SERGEY ELISEEV¹, PAVEL FILIANIN¹, JOST HERKENHOFF^{1,3}, WENJIA HUANG⁴, DANIEL LANGE^{1,3}, YURI NOVIKOV², ALEXANDER RISCHKA¹, RIMA XENIA SCHÜSSLER¹, CHRISTOPH SCHWEIGER¹, SVEN STURM¹, STEFAN ULMER⁵, and KLAUS BLAUM¹ — ¹Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany — ²Petersburg Nuclear Physics Institute, Gatchina, Russia — ³Ruprecht-Karls-Universität Heidelberg, 69117 Heidelberg — ⁴Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China — ⁵Ulmer Fundamental Symmetries Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

The high-precision Penning-trap mass spectrometer Pentatrap[1] features a stack of five Penning traps and determines mass-ratios with a relative uncertainty below 10^{-11} . Mass-ratio determinations of stable and long-lived highly charged ions have numerous applications, among others, in neutrino physics [2] and the search of possible clock transitions in highly charged ions (HCI)[3]. The unique features of Pentatrap include access to HCI, a stabilized 7 T magnet, and a cryogenic detection system with single ion phase sensitivity. This is achieved by Fourier Transform Ion Cyclotron Resonance (FT-ICR) detection of the image-current induced in the trap electrodes. The latest measurements include the Q value of the β -decay of ¹⁶³Ho with a relative uncertainty of below 7 · 10⁻¹² and the mass of ²⁰⁸Pb. In lead a longlived metastable electronic state was discovered.

[1] J. Repp, et al., Appl. Phys. B 107 (2012) 983

[2] J. Gastaldo, et al., Appl. Phys. B **226** (2017) 1623

[3] M.G. Kozlov, et al., Rev. Mod. Phys. 90 (2018)

MS 1.3 Mon 11:30 H3

The transportable antiproton trap BASE-STEP — •CHRISTIAN SMORRA¹, FATMA ABBASS¹, MATTHEW BOHMAN^{2,3}, DANIEL POPPER¹, RON MOLLER¹, MARKUS WIESINGER^{2,3}, CHRISTIAN WILL^{2,3}, JACK DEVLIN^{2,4}, STEFAN ERLEWEIN^{2,4}, MARKUS FLECK^{2,5}, JULIA JAEGER^{2,3}, BARBARA LATACZ², PETER MICKE^{2,4}, ELISE WURSTEN^{2,4}, KLAUS BLAUM³, YASUYUKI MATSUDA⁵, CHRISTIAN OSPELKAUS^{6,7}, WOLFGANG QUINT⁸, ANNA SOTER⁹, JOCHEN WALZ^{1,10}, YASUNORI YAMAZAKI², and STEFAN ULMER² — ¹Johannes Gutenberg-Universität, Mainz, Germany — ²RIKEN, Wako-shi, Japan — ³Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany — ⁴CERN, Geneva, Switzerland — ⁵University of Tokyo, Japan — ⁶Leibniz Universität Hannover, Germany — ⁹ETH Zürich, Switzerland — ¹⁰Helmholtz Institute Mainz, Germany

High-precision comparisons of the proton's and antiproton's charge-tomass ratios and magnetic moments constitute stringent tests of CPT invariance, one of the cornerstones in the Standard Model of particle physics. The BASE collaboration has advanced these tests by precision measurements on single trapped antiprotons in a multi-Penning trap system in the antiproton decelerator hall at CERN, where magnetic field noise from the facility operation have become a major concern. To further advance the precision, we have designed the transportable antiproton trap BASE-STEP to relocate antiproton precision measurements into other laboratories. I will present a design report and the status of the project.

MS 1.4 Mon 11:45 H3 **Transportable Cryostat and Permanent Magnet Trap for STEP** —•DANIEL POPPER¹, FATMA ABBAS¹, MATTHEW BOHMAN^{1,2}, STEFFEN GAVRANOVIC¹, CRISTINA IBANEZ¹, RON MOLLER¹, SAMUEL RUHL¹, MARKUS WIESINGER^{2,3}, CHRISTIAN WILL², JACK DEVLIN^{3,4}, STEFAN ERLEWEIN^{3,4}, MARKUS FLECK^{3,5}, JULIA JAEGER^{2,3}, BAR-BARA LATACZ², PETER MICKE^{3,4}, ELISE WURSTEN^{3,4}, KLAUS BLAUM², YASUYUKI MATSUDA⁵, CHRISTIAN OSPELPLAUS^{7,8}, WOLF-GANG QUINT⁶, JOCHEN WALZ^{1,9}, STEFAN ULMER³, and CHRISTIAN SMORRA^{1,3} — ¹Johannes Gutenberg University, Mainz, Germany — ²Max-Plank-Institute for Nuclear Physics, Heidelberg, Germany — ³RIKEN, Wako-shi, Japan — ⁴CERN, 1211 Geneva, Switzerland — ⁵Universitÿ of Tokyo, Japan — ⁶GSI, Darmstadt, Germany — ⁷Leibniz Universität Hannover, Germany — ⁸PTB, Braunschweig, Germany — ⁹Helmholtz-Institut Mainz, Germany

 $STE\bar{P}$, "Symmetry Tests in Experiments with Portable Antiprotons", is an addition to the BASE experiment. To enable antiproton measurements with improved precision, future measurements need to be conducted outside of the "Antiproton Decelerator" hall to circumvent limitations by magnetic field fluctuations. For this, we designed a transportable cryostat, a pulse-tube cooler and liquid helium tank to cool a Penning trap system down to 4K during transportation and periods were no power is available. Also a permanent magnet system will be used as an alternative approach to using a superconducting magnet to trap the particles. I will present and characterize the set-up of the transportable cryostat and the permanent magnet system.

 $\mathrm{MS}\ 1.5\quad \mathrm{Mon}\ 12{:}00\quad \mathrm{H3}$

An Accumulation Radio-Frequency Quadruple Cooler-Buncher for the PUMA Offline Ion Source — \bullet CLARA KLINK¹, FRANK WIENHOLTZ¹, CARINA KANITZ², STEPHAN MELBRUNOT², MARKUS KRISTIAN VILEN², and SIMON LECHNER² — ¹TU Darmstadt, 64289 Darmstadt, Deutschland — ²CERN, 1211 Meyrin, Schweiz

The antiProton Unstable Matter Annihilation (PUMA) experiment plans to utilise antiprotons to further characterise stable as well as radioactive nuclei. Antiprotons will be used to specify the isospin composition of the nuclei by analysing the reaction products of an antiproton-nucleon annihilation. Inter alia, PUMA plans on performing experiments with low-energy antiprotons from the ELENA facility of CERN with a broad range of stable isotopes from an offline ion source to observe their behaviour during antiprotonic annihilation. For a successful operation of PUMA a high event rate with a highpurity ion beam is crucial, to clearly differentiate from background annihilations, thus the offline ion source beamline must meet several requirements to transport and shape the ion beam. The purification of the ion beam is done with a multi-reflection time-of-flight mass spectrometer. For achieving a sufficiently high event rate and prevent the production of secondary particles in the experimental zone, the ion beam will be accumulated, bunched and buffer gas cooled in an RFQ. This talk will give an introduction on the principle of operation for the PUMA RFQ. The requirements for the RFQ will be defined and an overview of the PUMA offline ion source beamline is given.

MS 1.6 Mon 12:15 H3 Reduction of Measurement Uncertainty in MC-ICP-MS: A Precondition for the Dissemination of the SI Units Kilogram and Mole — •AXEL PRAMANN and OLAF RIENITZ — Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

After the revision of the SI units in May 2019, one of the two methods

Location: H3

Location: H3

to realize and disseminate the kilogram and mole is the the X-raycrystal-density (XRCD) method (1-2). Here, silicon atoms in a silicon sphere are *counted* combining the measurements of the volume, the lattice parameter, the surface properties, and the isotopic composition using the fixed Avogadro constant. A key experiment uses high resolution multicollector inductively coupled plasma mass spectrometry (HR-MC-ICP-MS) to measure isotope ratios in natural and in 28Si enriched silicon to determine the respective molar mass (M) (3). It is shown how the measurement uncertainty of the isotope ratios according to the *Guide to the Expression of Uncertainty in Measurement* influences the results when using natural or enriched silicon and how this has been, is, and will be treated in the near future combining established and new experimental techniques (4).

K. Fujii et al., Metrologia, 53, A19 (2016). (2) B. Guettler, O. Rienitz, A. Pramann, Annalen der Physik, 1800292 (2018). (3) A. Pramann, T. Narukawa, O. Rienitz, Metrologia, 54, 738 (2017). (4) A. Pramann, J. Vogl, O. Rienitz, MAPAN J. Metrol. Soc. I, 35, 499 (2020).

 $$\rm MS~1.7~Mon~12:30~H3$$ Development and Characterization of a Multi-Reflection

MS 2: Precision Mass Measurements II

ion source.

Time: Monday 14:00–15:30

Invited Talk MS 2.1 Mon 14:00 H3 Experiments with multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) at TRIUMF and GSI/FAIR — •CHRISTINE HORNUNG¹, THE FRS ION CATCHER COLLABORATION^{1,2}, and THE TITAN COLLABORATION³ — ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany — ²II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany — ³TRIUMF, Vancouver, Canada

MR-TOF-MS have been developed for the TITAN experiment at TRI-UMF and for the FRS/Super-FRS at GSI/FAIR at the JLU Giessen. The systems incorporate several novel and unique concepts. The design enables world class performance, including a mass resolving power up to 1,000,000, mass accuracies down to $1.8\cdot 10^{-8}$ and a background suppression of greater than 7 orders of magnitude.

Experiments contributing to different fields from nuclear astrophysics and structure were performed at the FRS Ion Catcher experiment at the in-flight fragment separator FRS at GSI and the TITAN experiment at the ISOL facility ISAC at TRIUMF, Canada.

In addition, the use of these MR-TOF-MS goes even beyond precision mass measurements, e.g., they can be employed to identify and analyze ions independent of their decay properties unambiguously. This enables novel and universal approaches to measure reaction cross sections, fission yields, half-lives, and branching ratios. Recent highlights and perspectives from both experiments at GSI and TRIUMF will be presented focusing on different regions of the chart of nuclei.

MS 2.2 Mon 14:30 H3

Latest improvements on TITAN*s Multiple-Reflection Time-Of-Flight Mass-Spectrometer — •ALI MOLLAEBRAHIMI^{1,2}, TIMO DICKEL^{1,3}, ANDREW JACOBS^{2,4}, ANIA KWIATKOWSKI^{2,5}, TOBIAS MURBÖCK², MORITZ PASCAL REITER⁶, and COULTER WALLS² — ¹University of Gießen, Gießen, Germany — ²TRIUMF, Vancouver, Canada — ³GSI, Darmstadt, Germany — ⁴University of British Columbia, Vancouver, Canada — ⁵University of Victoria, Victoria, Canada — ⁶University of Edinburgh, Edinburgh, United Kingdome

TRIUMF*s Ion Trap for Atomic and Nuclear science (TITAN) is specialized in high-precision mass measurement and isobaric separation of exotic nuclei by using different electromagnetic and electrostatic traps: A precision Penning trap for the highest-precision mass measurements, EBIT (Electron Beam Ion Trap) for charge breeding and gamma spectroscopy measurements of radioactive nuclei and MR-TOF-MS (Multiple-Reflection Time-Of-Flight Mass Spectrometer) for high-precision mass measurement as well as for monitoring and identification of ISAC beam. MR-TOF-MS can be also used as an isobar separator for beam purification with a high separation power and send the isobarically-purified beam toward the penning trap or other downstream experiments. MR-TOF MS is one of the crucial setups enables the studies of short-lived and exotic nuclei far away from the valley of stability. Mass measurements of these isotopes are demanded for studies of nuclear structure and nuclear astrophysics processes. In this work, the performance, the capabilities and the latest technical improvements of MR-TOF-MS is going to be presented.

Time-of-Flight Mass Separator (MR-ToF MS) for the Offline

Ion Source of PUMA - • MORITZ SCHLAICH and FRANK WIEN-

The antiProton Unstable Matter Annihilation (PUMA) project aims

at investigating the nucleon composition in the matter density tail of

short-lived as well as stable isotopes by studying antiproton-nucleon

annihilation processes. For this purpose, low-energy antiprotons pro-

vided by the Extra Low Energy Antiproton (ELENA) facility at CERN

will be trapped together with the ions under investigation. While the

unstable ions will be supplied by the Isotope mass Separator On-Line

DEvice (ISOLDE) at CERN, the stable ions are taken from an offline

ion source that should be able to provide a cooled and bunched as

well as isotopically pure ion beam. It is used by means of comparison

with known isotopes to benchmark the antiproton nuclear annihila-

tion process as well as for development and reference measurements at

ELENA. The ion source contains a radio-frequency quadrupole cooler-

buncher for ion accumulation and bunching. To purify the beam, an

MR-ToF MS will be used. The talk will give an overview of the working principle and the design of the MR-ToF MS for the PUMA offline $% 10^{-10}$

 ${}_{\rm HOLTZ}$ — TU Darmstadt, Darmstadt, Deutschland

MS 2.3 Mon 14:45 H3 **High-Precision Mass Spectrometry of Superheavy Elements** — •OLIVER KALEJA^{1,2}, BRANKICA ANDELIC^{2,3,4}, LUISA ARCILA GONZALEZ⁴, JOACQUÍN BERROCAL⁵, LENNART BLAAUW⁴, KLAUS BLAUM⁶, MICHAEL BLOCK^{2,3,7}, PIERRE CHAUVEAU^{2,3}, STANISLAV CHENMAREV^{3,6}, PREMADITYA CHHETRI^{2,3}, CHRISTOPH E. DÜLLMANN^{2,3,7}, MARTIN EIBACH¹, JULIA EVEN⁴, PAVEL FILIANIN⁶, FRANCESCA GIACOPPO^{2,3}, MANUEL J. GUTIÉRREZ TORRES⁵, FRITZ P. HESSBERGER^{2,3}, NASSER KALANTAR-NAYESTANAKI⁴, JACQUES J. W. VAN DE LAAR^{3,7}, MUSTAPHA LAATIAOUI^{3,7}, STEFFEN LOHSE^{3,7}, ENRIQUE MINAYA RAMIREZ⁸, ANDREW MISTRY², ELODIE MORIN⁸, YURY NECHIPORENKO^{9,10}, DENNIS NEIDHERR², STEVEN NOTHHELFER^{3,7}, VIRI NOVIKOV^{9,10}, SEBASTIAN RAEDER^{2,3}, ELIS-ABETH RICKERT^{3,7}, DANIEL RODRÍGUEZ⁵, LUTZ SCHWEIKHARD¹, PETER G. THIROLF¹¹, JESSICA WARBINEK^{2,7}, and ALEXANDER YAKUSHEV^{2,3} — ¹Univ. Greifswald — ²GSI Darmstadt — ³HIM Mainz — ⁴Univ. of Groningen — ⁵Univ. of Granada — ⁶MPIK Heidelberg — ⁷JGU Mainz — ⁸IJCLab Orsay — ⁹PNPI Gatchina — ¹⁰St. Petersburg Univ. — ¹¹LMU Munich

One of the keys in understanding the existence of superheavy elements with proton numbers $Z \geq 104$ is the study of phenomena like nuclear shell effects far from stability. For these studies, one has to measure atomic masses at the borders of the nuclear chart very accurately. In 2021, the performance of the mass spectrometer SHIPTRAP at the GSI in Darmstadt was significantly improved. As a result, the atomic masses of several heavy At, Bi, Cf, Fr, Rn, Th, Po and Pb isotopes and the superheavy nuclides ²⁵⁷Rf (Z = 104) and ²⁵⁸Db (Z = 105) were measured directly. For many of these nuclides also long-lived isomeric states were observed allowing us to determine their excitation energy. In this contribution, an overview of the experimental improvements and results will be given.

 $\mathrm{MS}~2.4\quad\mathrm{Mon}~15{:}00\quad\mathrm{H3}$

Investigation of ground and metastable nuclear states in the heaviest nuclei at SHIPTRAP — •FRANCESCA GIACOPPO^{1,2}, BRANKICA ANĎELIĆ^{1,2,3}, LUISA ARCILA GONZALEZ³, JOAQUÍN BERROCAL SÁNCHEZ⁴, LENNART BLAAUW³, KLAUS BLAUM⁵, MICHAEL BLOCK^{1,2,6}, PIERRE CHAUVEAU^{1,2}, STANISLAV CHENMAREV^{2,5}, PREMADITYA CHHETRI^{1,2}, CHRISTOPH E. DÜLLMANN^{1,2,6}, MARTIN EIBACH¹, JULIA EVEN³, PAVEL FILIANIN⁵, MANUEL JESÚS GUTIÉRREZ TORRES^{1,2,4}, FRITZ P. HESSBERGER^{1,2}, NASSER KALANTAR-NAYESTANAKI³, OLIVER KALEJA^{1,7}, JACQUES W. VAN DE LAAR^{2,6}, MUSTAPHA LAATIAOUI^{2,6}, STEFFEN LOHSE^{2,6}, EN-RIQUE MINAYA RAMIREZ⁸, ANDREW MISTRY¹, ELODIE MORIN⁸, YURY NECHIPORENKO^{9,10}, DENNIS NEIDHERR¹, STEVEN NOTHHELFER^{2,6},

MS 2.5 Mon 15:15 H3

YURI NOVIKOV^{9,10}, SEBASTIAN RAEDER^{1,2}, ELISABETH RICKERT^{2,6}, DANIEL RODRÍGUEZ⁴, LUTZ SCHWEIKHARD⁷, PETER THIROLF¹¹, JESSICA WARBINEK^{1,2,6}, and ALEXANDER YAKUSHEV^{1,2} — ¹GSI Darmstadt, Germany — ²HIM Mainz, Germany — ³University of Groningen, the Nederlands — ⁴University of Granada, Spain — ⁵MPIK Heildeberg, Germany — ⁶JGU University Mainz, Germany — ⁷Universiy of Greifswald, Germany — ⁸IJCLab Orsay, France — ⁹PNPI Gatchina, Russia — ¹⁰Saint Petersburg State University, Russia — ¹¹LMU University Munich, Germany

In a very recent experimental campaign performed with the Penning trap spectrometer SHIPTRAP at GSI the superheavy isotopes 257 Rf and 258 Db were investigated despite their low production rates. The masses of the ground state and isomeric states as well as for several nuclides with Z = 82 - 98 were directly measured with high accuracy.

Valuable information on the nuclear shell structure, its strength and evolution in the region of the heaviest elements can be directly derived from our experimental findings. The latter, therefore, complement results achieved in decay spetroscopy studies. Furthermore, such accurate masses in the vicinity of the superheavy element region serve as anchor points to determine the masses of heavier nuclei which are crucial for nuclear models attempting to pinpoint the position of the predicted island of stability.

accently, a new cylindrical measurement trap was installed and characterized. After recommissioning, a mass measurement campaign started

MS 3: Poster

Time: Monday 16:30–18:30

MS 3.1 Mon 16:30 P Current status of the LIONTRAP experiment — •SANGEETHA SASIDHARAN^{1,2}, OLESIA BEZRODNOVA¹, SASCHA RAU¹, WOLFGANG QUINT², SVEN STURM¹, and KLAUS BLAUM¹ — ¹MPIK, Heidelberg, Germany — ²GSI Helmholtzzentrum, Darmstadt, Germany

Atomic masses with high precision are essential parameters for sensitive tests of fundamental physics. LIONTRAP (Light-Ion Trap) is a dedicated mass spectrometer aiming for various light ion mass measurements with a relative precision of a few 10^{-12} (ppt). Our latest results include the atomic masses of the proton [1], the deuteron and the HD⁺ molecular ion [2]. These show an excellent agreement with values extracted from laser spectroscopy of HD⁺ [3] and the comparison is limited by the precision of the relative mass of the electron, $A_r(e)$. This brings in a motivation to measure the atomic mass of ⁴He which along with a g-factor measurement can improve the electron mass. Furthermore, the masses of ³He and ³T [4] can be used as an important cross-check for the determination of the electron antineutrino mass which is being investigated by the KATRIN experiment [5]. In this contribution I will discuss the efforts to measure the alluded systems at LIONTRAP.

[2] S. Rau *et al.*, Nature **585**, p. 43-47 (2020)

[3] Alighanbari, S. et al., Nature 581, 152-158 (2020)

- [4] E.G. Myers et al., Phys. Rev. Lett. 114, 013003 (2015)
- [5] M. Aker *et al.*, Phys. Rev. Lett. **123**, 221802 (2019)

Location: P

MS 3.2 Mon 16:30 P MOCCA: a 4k-pixel molecule camera for the position and energy resolved detection of neutral molecule fragments at the Cryogenic Storage Ring CSR — •ANSGAR LOWACK¹, DEN-NIS SCHULZ¹, STEFFEN ALLGEIER¹, CHRISTIAN ENSS¹, ANDREAS FLEISCHMANN¹, LISA GAMER², LOREDANA GASTALDO¹, SEBASTIAN KEMPF¹, OLDRICH NOVOTNÝ², and ANDREAS WOLF² — ¹Kirchhoff-Institute for Physics, Heidelberg University — ²Max-Planck-Institute for Nuclear Physics, Heidelberg

In this contribution an overview of the results will be given.

Status report on the TRIGA-TRAP experiment — •Jacques J. W. van de Laar^{1,2}, Klaus Blaum³, Michael Block^{1,2,4}, Stanislav Chenmarev^{3,5}, Christoph E. Düllmann^{1,2,4}, Steffen

 ${\rm Lohse}^{1,2},$ and Szilard Nagy
3- $^1{\rm Department}$ Chemie - Standort TRIGA, Johannes Gutenberg-Universität Mainz, DE- $^2{\rm Helmholtz-Institut}$ Mainz, DE- $^3{\rm Max-Planck-Institut}$ für Kernphysik, Heidel-

berg, $DE - {}^4GSI$ Helmholtzzentrum für Schwerionenforschung, Darm-

Experimental data of ground-state properties of exotic nuclei are important for nuclear structure studies and can test the reliability of

nuclear mass models. The TRIGA-TRAP experiment is a double

Penning-trap mass spectrometer used to perform high-precision mea-

surements on long-lived transuranium isotopes and fission produced

neutron-rich radionuclides at the research reactor TRIGA Mainz. Re-

with several long-lived actinide isotopes. The data evaluation is still ongoing. The current status and first results will be presented.

stadt, DE — ⁵Petersburg Nuclear Physics Insitute, Gatchina, RU

MOCCA is a 64 x 64-pixel detector based on metallic magnetic calorimeters (MMCs), enabling a spatially- and energy-resolved detection of neutral massive particles with keV kinetic energies on a detector area of 4.5 cm x 4.5 cm with 99.5% filling factor. MOCCA was developed for the investigation of dissociative recombination, a fundamental process in interstellar chemistry, at the Cryogenic Storage Ring CSR at the Max-Planck Institute for Nuclear Physics in Heidelberg. For this purpose, a high detection efficiency for molecule fragments with kinetic energies between 1 and 300 keV, rates up to several hundred hits per second and multi-hit capability are required. We present the detector design and recent measurements showing the full functionality of the detector. Measurements with 6 keV X-ray photons yielded an energy resolution of 88 eV (FWHM). With this, MOCCA meets all the requirements for its use at the CSR. MOCCA is presently the largest and most complex MMC-based detector.

MS 4: Storage Rings

Time: Tuesday 10:45–12:15

Invited TalkMS 4.1Tue 10:45H2Reaction studies with internally cold molecular ions in a storage ring — •OLDŘICH NOVOTNÝ — Max-Planck-Institut für Kernphysik, Heidelberg, Germany

In last decades room-temperature ion storage rings have proven to be unique tools for investigating properties and reaction dynamics of molecular ions, in particular the low-energy electron-ion collisions in merged beams. This is mainly due to 1) the long storage of the ions allowing relaxation of the internal ion states and 2) the ion beam target preparation for experiments at high collision-energy resolution by, e.g., electron cooling. The recently built Cryogenic Storage Ring (CSR) [1] in Heidelberg, Germany, with its < 6 K vacuum wall temperature brings these advantages to a new level: the low radiation field allows the molecules to relax down to their ro-vibrational ground-state. Studying collisions of cold molecular ions with electrons, photons, and atoms give access to unprecedented details on the respective reaction dynamics. Also, the CSR environment mimics well the conditions in the cold interstellar medium, which makes CSR an outstanding experimental set-up for laboratory astrochemistry.

In the talk the measurements from the first five years of CSR operation will be reviewed, with an emphasis on the recent rotational-state resolved dissociative recombination studies [2].

[1] R. von Hahn et al. Rev. Sci. Instr. 87 063115 (2016)

[2] O. Novotny et al., Science 365, 676 (2019)

MS 4.2 Tue 11:15 H2 Integration of the 4k-pixel molecule camera MOCCA into the Cryogenic Storage Bing CSB and a CSB-independent ex-

the Cryogenic Storage Ring CSR and a CSR-independent experimental setup — •LISA GAMER¹, CHRISTIAN ENSS², ANDREAS FLEISCHMANN², ANSGAR LOWACK², MICHAEL RAPPAPORT³, DENNIS SCHULZ², ABHISHEK SHAHI³, YONI TOKER⁴, ANDREAS WOLF¹, and

Location: H2

^[1] F. Heiße et al., Phys. Rev. A 100, 022518 (2019)

OLDŘICH NOVOTNÝ¹ — ¹MPIK Heidelberg — ²KIP Heidelberg University — ³Weizmann Institute of Science, Rehovot, Israel — ⁴Bar-Ilan University, Ramat Gan, Israel

The Cryogenic Storage Ring CSR at the Max Planck Institute for Nuclear Physics, Heidelberg, can store heavy molecular ions in their rotational and vibrational ground states, thus enabling to investigate electron-ion interactions such as dissociative recombination in laboratory environment at conditions that are close to those in cold interstellar plasmas. To reconstruct the full kinematics of these processes, a position and energy sensitive coincident detection of multiple reaction products is necessary. For this purpose, MOCCA, a 4k-pixel molecule camera based on magnetic calorimeters with a detection area of $45 \, \mathrm{mm} \times 45 \, \mathrm{mm}$, was developed and fabricated at the Kirchhoff-Institute for Physics in Heidelberg. We present the plans for integrating MOCCA and its $^{3}\mathrm{He}/^{4}\mathrm{He}$ dilution refrigerator into CSR as well as a CSR-independent experimental setup where MOCCA will be used to study collision- and photon-induced ion fragmentation processes.

 $\mathrm{MS}~4.3\quad\mathrm{Tue}~11{:}30\quad\mathrm{H2}$

First isochronous mass spectrometry in an electrostatic storage ring — •VIVIANE C. SCHMIDT¹, MANFRED GRIESER¹, KLAUS BLAUM¹, ÁBEL KÁLOSI^{1,2}, HOLGER KRECKEL¹, DAMIAN MÜLL¹, OLDŘICH NOVOTNÝ¹, FELIX NUESSLEIN¹, and ANDREAS WOLF¹ — ¹Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany — ²Columbia Astrophysics Laboratory, Columbia University, New York, 10027 New York, USA

In magnetic storage rings isochronous mass spectrometry is a vital tool for radionuclei mass measurements. These experiments require relativistic beam energies and low beam emittance and momentum spread, reachable only by means of additional phase-space cooling. Here, we report the first isochronous operation of an electrostatic storage ring. achieved at the Cryogenic Storage Ring facility at the Max-Planck-Institut für Kernphysik in Heidelberg. At non-relativistic energies of a few hundred keV and using beams with typical momentum spreads of 10^{-3} and emittance of a few mm·mrad high resolution measurements were performed without the need of phase space cooling. Mass resolutions of $\frac{\Delta m}{m} < 10^{-5}$ could be reached and isobaric contaminations well below relative beam fractions of 10^{-4} could be identified at $A \sim 20$ u. Both the time-of-flight method and revolution frequency measurements using a Shottky pick-up were successfully employed. Due to the purely electrostatic storage, this method furthermore has the distinct advantage over magnetic storage rings of providing a nearly unlimited mass operation range, enabling measurements from small atoms to complex molecule and cluster systems.

MS 4.4 Tue 11:45 H2 High resolution and fast Schottky spectroscopy of short-lived fragments in isochronous heavy ion storage rings — •Shahab Sanjari^{1,2}, Klaus Blaum³, Dmytro Dmytriiev^{1,4}, David Freire

MS 5: Annual General Meeting of the Mass Spectrometry Division

Time: Tuesday 12:15–13:15 Mitgliederversammlung

MS 6: New Developments I

Time: Tuesday 14:00-15:30

Invited Talk MS 6.1 Tue 14:00 H2 The Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy and its potential for fast and highly selective mass separation — •STEPHAN MALBRUNOT — CERN, ISOLDE, Experimental Physics Department, CH-1211 Geneva 23, Switzerland

Collinear laser spectroscopy (CLS) is a powerful tool to access nuclear ground state properties of short-lived radionuclides such as spin, charge radius, and electromagnetic moments. Conventional CLS is based on the detection of fluorescence from laser-excited ions or atoms. It is limited to radioactive ion beams with yields of more than 100 to 10,000 ions/s, depending on the specific case and spectroscopic transition.

To reach radionuclides with lower production yields, we have de-

 FERNÁNDEZ^{1,3}, YURI A. LITVINOV⁴, and WOLFRAM KORTEN⁵ —
¹GSI Helmholtz Center, D-64291 Darmstadt, Germany — ²Aachen University of Applied Sciences, D-52005 Aachen, Germany — ³Max
Planck Institute for Nuclear Physics, D-69117 Heidelberg, Germany —
⁴Heidelberg University, D-69117 Heidelberg, Germany — ⁵IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

Using non-destructive Schottky detectors, precise determination of masses and lifetimes of exotic nuclear species and their isomeric states can be performed at the experimental storage ring ESR (GSI / FAIR) on cooled fragments (standard mode of operation) and hot fragments (isochronous mode). Single ion sensitivity has regularly been achieved in the past using the former mode of operation. Up to now only destructive detection methods were employed in the latter mode. In this work we describe how the limits of time resolution can be pushed in conjunction with non-destructive and time-resolved frequency analysis of signals acquired from recently developed detectors. These detectors deliver higher sensitivity as well as a higher frequency resolution. This approach will open new opportunities to explore highly charged exotic nuclei with lifetimes down to several tens of milliseconds and energies as low as 100 keV. It is as well a milestone achievement towards the realization of precision mass and lifetime spectrometry at future Collector Ring of FAIR.

MS 4.5 Tue 12:00 H2

Mass-spectrometry assisted measurement of the bound-state beta decay of 205 Tl⁸¹⁺ ions — •Rui-Jiu Chen, Ragandeep Singh Sidhu, Yuri A Litvinov, and E121 collaboration — GSI Helmholtzzentrumfr Schwerionenforschung, Planckstrae 1, 64291 Darmstadt, Germany

Beta decay of highly charged ions [1] has attracted much attention in recent years. The studies of beta decay of highly charged ions can be performed solely at ion storage rings and ion traps where their high atomic charge states can be preserved for extended periods of time (up to several hours) and the decay products can be identified by using precision mass spectrometry. In this talk, we will report on the recent results from the first direct measurement of the bound-state beta decay of bare $^{205}\mathrm{Tl}^{81+}$ ions. The experiment was performed in March-April 2020 at GSI. The experiment is associated with two major physics motivations. One is linked with the LOREX [2] project (acronym of LORandite EXperiment) wherein the measurement is needed to determine the matrix element for the pp neutrino capture by the ground state of ²⁰⁵Tl to the 2.3 keV excited state in ²⁰⁵Pb. This capture reaction has by far the lowest threshold (E > 53 keV) and is thus of utmost significance for extending the neutrino flux to lower energies. The second physics case is associated with the 205 Pb- 205 Tl pair as a s-process cosmochronometer. The measurement is crucial for the clarification of the fate of 205 Pb in the early solar system. Reference: [1] Yu. A. Litvinov, F. Bosch, Rep. Prog. Phys. 74, 016301, (2011). [2] M.K. Pevićević et al., Nucl. Instr. and Meth. A 621, 282 (2010).

Location: MVMS

Location: H2

veloped the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy (MIRACLS) [1,2]. It is based on a Multi Reflection Time of Flight (MR-ToF) device in which ions bounce back and forth between electrostatic mirrors. The trapped ions are probed by the laser during each revolution inside the MR-ToF device which largely enhances the sensitivity of CLS.

As part of MIRACLS, we are developing new cooling schemes as well as an unprecedented 30-keV MR-ToF device. These techniques also open new possibilities for fast and highly selective mass separation beneficial for a wide range of applications. This talk will present the MIRACLS concept and its first experimental highlights.

S. Sels et al., Nucl. Instr. Meth. Phys. Res. B, 463, 310 (2020)
V. Lagagki et al., Nucl. Instr. Meth. Phys. Res. B, in press (2021)

Thursday

MS 6.2 Tue 14:30 H2

Advancing radiation detected resonance ionization towards heavier elements and more exotic nuclides • Jessica WARBINEK^{1,2}, BRANKICA ANDELIĆ^{1,3}, MICHAEL BLOCK^{1,2,4}, PRE-MADITYA CHHETRI^{1,4}, ARNO CLAESSENS⁵, RAFAEL FERRER⁵, FRANCESCA GIACOPPO^{1,4}, OLIVER T. KALEJA^{1,6}, EUNKANG KIM², MUSTAPHA LAATIAOUI², JEREMY LANTIS², ANDREW MISTRY^{1,7}, DANNY MÜNZBERG^{1,2,4}, STEVEN NOTHHELFER^{1,2,4}, SEBASTIAN RAEDER^{1,4}, EMMANUEL REY-HERME⁸, ELISABETH Rickert^{1,2,4}, Jekabs Romans⁵, Elisa Romero-Romero², Marine Vandebrouck⁸, and Piet Van Duppen⁵ — 1 GSI Helmholtzzentrum für Schwerionenforschung, Germany — 2 Johannes Gutenberg-Universität, Mainz, Germany — $^3{\rm KVI-CART},$ Groningen, The Netherlands — ⁴Helmholtz Institut Mainz, Germany — ⁵KU Leuven, IKS, Belgium — ⁶Universität Greifswald, Germany — ⁷TU Darmstadt, Germany — ⁸CEA Saclay, France

RAdiadtion Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy of the heaviest actinides. Here, most of the nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after production and separation due to their short lifetimes and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas filled stopping cell at the GSI in Darmstadt. To expand this technique for the search of the first atomic levels in the heaviest actinide, lawrencium (Z=103), the sensitivity of this setup needs to be improved. Therefore, a new movable detector design was added increasing the RADRIS efficiency by about $75\,\%.$ Further development work was performed to enable the study of longer-lived (>1 h) and shorter-lived nuclides (<1 s) with the RADRIS method.

MS 6.3 Tue 14:45 H2 Development of an apparatus for in gas-jet laser spectroscopy of the heaviest elements — •DANNY MÜNZBERG^{1,2,3}, MICHAEL BLOCK^{1,2,3}, ARNO CLAESSENS⁴, PIET VAN DUPPEN⁴, RAFAEL FERRER⁴, JEKABS ROMAN⁴, SANDRO KRAEMER⁴, JEREMY LANTIS³, MUSTAPHA LAATIAOUI³, STEVEN NOTHHELFER^{1,2,3}, SEBASTIAN RAEDER^{1,2}, SIMON SELS⁴, and THOMAS WALTHER⁵ — $^1\mathrm{GSI}$ Helmholtzzentrum für Schwerionenforschung, Darmstadt, DE - ²Helmholtz-Institut Mainz, DE - ³Department Chemie, Johannes Gutenberg-Universität, Mainz, DE - ⁴Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium — $^5\mathrm{Technische}$ Universität Darmstadt

Laser spectroscopy is a commonly used technique for determining basic nuclear and atomic properties. At GSI-Darmstadt, we focus on studying elements in the heavy actinide region. Due to low production rates in these experiments, high efficiency and sensitivity are necessary. The Radiation Detected Resonance Ionization (RADRIS) technique has been used to study isotopes of Nobelium. However, with this technique the spectral resolution is limited to a few GHz, preventing the determination of nuclear properties from hyperfine spectra. To overcome this problem, an in-gas-jet-spectroscopy apparatus is being developed. It combines features of the RADRIS and the in-gas-jet technique to minimize typical broadening mechanisms and improving the

MS 7: Accelerator Mass Spectrometry I

Time: Thursday 10:45-12:30

Invited Talk

MS 7.1 Thu 10:45 H3 The new compact, multi isotope AMS system (MILEA) at ETH Zurich - performance and applications •Marcus Christl¹, Sascha Maxeiner², Arnold Müller², Philip GAUTSCHI¹, CHRISTOF VOCKENHUBER¹, and HANS-ARNO SYNAL¹ $^{1}\mathrm{ETH}$ Zürich, Switzerland — $^{2}\mathrm{Ionplus}$ AG, Dietikon, Switzerland

The prototype version of a new, compact, multi-isotope, low energy accelerator mass spectrometry system (MILEA) was built in collaboration with Ionplus AG and set into operation at ETH Zurich in late 2018. The system is based on a 300 kV power supply and was optimized for small footprint $(3.5 \times 7 \text{ m}^2)$ and to reach optimal performance for ¹⁰Be, ¹⁴C, ²⁶Al, ¹²⁹I, and actinide measurements at low energies. During the past years the system was thoroughly tested and it is now increasingly being used for routine AMS operations.

spectral resolution by about an order of magnitude. Laser induced fluorescence measurements on Yb and Dy samples have been performed to compare different hypersonic nozzles with respect to the obtained gas-jet conditions for high resolution laser spectroscopy. Recent results will be discussed and an update on the status of the gas jet apparatus will be given.

MS 6.4 Tue 15:00 H2

Conceptual design of an actinide ion mobility spectrometer -•ELISABETH RICKERT^{1,2,3}, HARTMUT BACKE³, MICHAEL BLOCK^{1,2,3}, Christoph E. Düllmann^{1,2,3}, Mustapha Laatiaoui^{1,3}, Werner LAUTH³, SEBASTIAN RAEDER², and PHILIPP SIKORA³ — ¹Helmholtz-Institut Mainz, Mainz, Germany — $^2\mathrm{GSI}$ Helmholtz
zentrum für Schwerionenforschung, Darmstadt, Germany — 3 Johannes Gutenberg-Universität Mainz, Mainz, Germany

Chemical and physical properties of the heaviest elements are strongly influenced by relativistic effects which can result in deviations from the periodicity predicted by the periodic table of elements. Systematic mobility measurements on monoatomic lanthanide ions previously proved a dependence of ion-atom interactions on the underlying electronic configuration, providing a way to measure these deviations [Laatiaoui2012]. Mobility studies are presently being extended to the actinides which are expected to have more pronounced deviations from periodicity. In our experiment, element-selective ion production is provided by two-step photo ionization from a filament sample in an argon filled drift cage. In my talk, experimental approach, first results and future plans are presented.

[Laatiaoui2012]: Laatiaoui, M. et al., EPJD (2012) 66:232

MS 6.5 Tue 15:15 H2 Design of an isotope separator for target production — •Dominik Studer¹, Rugard Dressler², Ulli Köster³, Dorothea Schumann², and Klaus Wendt¹ — ¹JGU Mainz — ²PSI Villigen — ³ILL Grenoble

With the rising demand for isotopically pure targets for the study of specific nuclear reactions, the construction of a high-throughput isotope separator is foreseen within the SANDA project. Specifically the handling and purification of radioisotopes is mandatory and will be enabled by installation of the whole setup within a radioactivity monitoring area in close contact to a hot lab. In the current project phase the design of the apparatus and establishment of a suitable facility, located at PSI, is planned. The design will be derived from experiences with the RISIKO isotope separator at Mainz University, which has been successfully used for radioisotope purification and implantation, e.g. within the ECHo project. It features a hot-cavity laser ion source. The laser system is based upon tunable pulsed Ti:sapphire lasers with high repetition-rate. Ion extraction from the source region with about 30 kV, electrostatic beam focussing and separation with a conventional double focussing sector field magnet seem most suitable for the task. After passing the separation slit, the ion beam can be re-focused to well below mm size for implantation into detectors, collectors or targets with sub mm control and resolution. In this contribution we present the principles, capabilities and limitations of the RISIKO separator using experimental and simulation data. Improvements which can be implemented in the new SANDA isotope separator are discussed.

Location: H3

In the first part of the presentation, the layout of the system, its properties and setup for the different nuclides will be presented and the performance of the system will be discussed for the different nuclides. In the second part of the presentation some recent results of our actinide and heavy ion program will be presented including a $^{236}\mathrm{U}/^{238}\mathrm{U}$ record from sea shells in the Northeast Atlantic Ocean and $^{233}\mathrm{U}/^{236}\mathrm{U}$ data from the Arctic Ocean.

MS 7.2 Thu 11:15 H3 Integration of the EA-IRMS system to the CologneAMS facility — •Martina Anna Gwozdz, Gereon Hackenberg, Stefan HEINZE, SUSAN HERB, TIMM-FLORIAN PABST, MARKUS SCHIFFER, ALEXANDER STOLZ, and ALFRED DEWALD - Institute for Nuclear Physics, University of Cologne, Germany

Recently a new elemental analyser (EA) and an isotope ratio mass spectrometer (IRMS) for stable isotopes have been installed at the 6MV AMS device of CologneAMS. In addition to the ¹⁴C content of a sample this will provide precise values of stable isotopic ratios like δ^{13} C or δ^{15} N.

A direct connection to the existing gas interface as well as the implementation of the new devices into the control software of the existing AMS system were realized. In this way it is possible to measure quasi-simultaneously the $^{14}\mathrm{C}$ concentration with the 6MV AMS system and the $\delta^{13}\mathrm{C}$ value with the IRMS device.

We will also investigate whether this new set-up will enable improved fractionation correction which are used in the 14 C data evaluation as proposed by Ravi Prasad et al. [1].

[1] G.V. Ravi Prasad et al., 2019, δ^{13} C correction to AMS data: Values derived from AMS vs IRMS values., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 455, p.244-249

MS 7.3 Thu 11:30 H3

Investigation of the beam trajectory and beam profile development in the 135° gas-filled magnet at the AMS device for medium mass isotopes at the Cologne University — •SUSAN HERB, GEREON HACKENBERG, MARKUS SCHIFFER, STEFAN HEINZE, and ALFRED DEWALD — Institute of Nuclear Physics, University of Cologne, Germany

First $^{53}\mathrm{Mn}$ and $^{60}\mathrm{Fe}$ test measurements revealed that improvements of the AMS set-up at the FN tandem accelerator should be made to enable the measurement of lower level isotopic ratios of 10^{-13} and 10^{-16} , respectively. Therefore, we aim to improve the isobar separation of the high energy mass spectrometer and its transmission. The beam profile along the ion paths through the 135° gas-filled magnet was measured in the dispersive direction (x-axis) with homemade silicon pin diode detector arrays. It was measured at 4 locations along the flight path in x direction and two-dimensional (x/y) at the exit of the magnet. We also investigated the effect of using nitrogen or helium gas. The measured data was used to test our in-house developed Monte-Carlo simulation code, which simulates the ion transport in a gas-filled magnet. The first version of the code was designed for nitrogen gas and was now adapted for helium. The comparison of the calculated and the measured beam trajectories revealed that the gas density effect influencing the ion charge has to be considered [1]. The contribution will report on details of the conducted measurements and compare it with the calculations. Ongoing developments of the simulation code will be discussed. [1] Betz, 1972, Reviews of Modern Physics, 44.

MS 7.4 Thu 11:45 H3

Measurements of volatile radioactive isotopes in reactor graphite — •TIMM-FLORIAN PABST¹, GEREON HACKENBERG¹, STE-FAN HEINZE¹, SUSAN HERB¹, YANNIK JACOBI¹, MARKUS SCHIFFER¹, ALEXANDER STOLZ¹, ERIK STRUB², and ALFRED DEWALD¹ — ¹Institute for Nuclear Physics, University of Cologne, Germany — ²Department of Chemistry, University of Cologne, Germany

Activated graphite, e.g. from graphite moderated reactors, contains several radioactive nuclides like 14 C, 36 Cl, or 3 H. For the final disposal of such material a quantitative characterization is demanded. We are aiming for a system which enables automated measurements

using the AMS technique with gaseous samples, for ¹⁴C, ³⁶Cl, and ³H, The planned system should provide a high sample throughput as well as the possibility of sample dilution in cases of high activity. Therefore a new gas-interface was built which uses two syringes for the transport of the sample gas into the ion source and a separate reservoir for blank gas which can be used for the dilution. For the measurement of the tritium concentration, we expanded our ion source test bench. A 100 kV accelerator stage with a carbon stripper foil in the centre was installed along with an additional 90° analysing magnet and a silicon detector. This will allow efficient and accurate characterisation of the activity in reactor graphite material, which is foreseen be stored in repositories like e.g. the mine Konrad where activity limits have to be considered. In this contribution we will present the layout of our systems as well as its present status. Supported by BMBF under contract number 15S9410B.

MS 7.5 Thu 12:00 H3

Developments towards the detection of ¹³⁵**Cs and** ¹³⁷**Cs by AMS** — •ALEXANDER WIESER¹, JOHANNES LACHNER^{1,2}, DORIAN ZOK³, MARTIN MARTSCHINI¹, PETER STEIER¹, ALFRED PRILLER¹, and ROBIN GOLSER¹ — ¹University of Vienna, Faculty of Physics - Isotope Physics, Vienna, Austria — ²Helmholtz-Zentrum Dresden-Rossendorf, Accelerator Mass Spectrometry and Isotope Research, Dresden, Germany — ³Leibniz Universität Hannover, Institute of Radioecology and Radiation Protection, Hannover, Germany

The isotopic ratio 135 Cs/ 137 Cs can be used to assign sources of anthropogenic cesium input, or as a geochemical tracer, or for modifying anthropogenic radionuclide dispersion models. Due to the long halflife of ≈ 2.3 Ma, 135 Cs is hard to detect via radiometric methods, while mass spectrometry has to deal with isobaric interferences, i.e. 135 Ba and 137 Ba for Cs detection. The new method of Ion Laser InterAction Mass Spectrometry (ILIAMS) at the Vienna Environmental Research Accelerator (VERA) overcomes this problem by exploiting differences in the electron affinities of CsF₂⁻ and BaF₂⁻. A 133 CsF₂⁻ current on the order of 50 nA from a mixed Cs₂SO₄ and PbF₂ - matrix is extracted from the ion source. At VERA two sputtering processes are currently investigated: Rubidium sputtering and negative ion production without external sputter agent. First results show reproducible detection of 135 Cs and 137 Cs/ 133 Cs = $6 \cdot 10^{-12}$. We aim to reduce this value by at least two orders of magnitude for measuring environmental samples.

MS 7.6 Thu 12:15 H3

Location: H3

First studies on ⁹⁹Tc detection using Ion Laser InterAction Mass Spectrometry (ILIAMS) — •JOHANNA PITTERS^{1,2}, FADIME GÜLCE¹, KARIN HAIN¹, MARTIN MARTSCHINI¹, and ROBIN GOLSER¹ — ¹University of Vienna, Faculty of Physics — ²Vienna Doctoral School in Physics

Minute environmental concentrations of the anthropogenic radionuclide $^{99}\mathrm{Tc}$ (t_{1/2}=2.1·10⁵ a) can serve as a tracer for transport processes e.g. in oceanography. However, detection of environmental $^{99}\mathrm{Tc}$ presently requires Accelerator Mass Spectrometry (AMS) at the largest facilities available in order to adequately suppress the strong interference from the isobar $^{99}\mathrm{Ru}$.

As part of an FWF-funded project, we aim at making $^{99}\mathrm{Tc}$ accessible for measurement at the 3-MV facility VERA (Vienna Environmental Research Accelerator) with the novel isobar suppression technique of ILIAMS (Ion Laser InterAction Mass Spectrometry). For this development, laser photodetachment, chemical sample preparation, sample matrix material and ion source output all require optimization. As there is no stable Tc isotope, a normalization to an isotopic Tc spike material, e.g. $^{97}\mathrm{Tc}$, or a stable reference isotope of another element needs to be established as well.

This contribution presents the ongoing development and preliminary results, which yield a laser-suppression of Ru by up to 5 orders of magnitude and a $^{99}\mathrm{Tc}$ -detection limit of less than 10^6 atoms.

MS 8: Accelerator Mass Spectrometry II

Time: Thursday 14:00–15:15

The LISEL setup (Low-energy Isobar SEparation by Lasers) is currently being built at the University of Jena in the framework of a BMBF funded project. It comprises a gas-filled radio frequency quadrupole cooler where negative ions will be slowed down to thermal energies and overlapped with a laser beam. This allows an elemental selective suppression of isobars by laser photodetachment by careful selection of the photon energy. The tuneable Ti:Sapphire laser system is currently being developed at the University of Mainz. After commissioning the setup LISEL will be transferred to the DREAMS (DREsden AMS) facility at the Helmholtz Center Dresden Rossendorf (HZDR).

To get the required spectroscopic data especially for negative molecular ions a measurement program is currently being established at the low-energy electrostatic storage ring FLSR at the University of Frankfurt. This allows to study vibrationally cold molecules and acquire photodetachment data to establish further suppression schemes. This allows to study currently unavailable new isotopes and extends AMS to many new applications.

MS 8.2 Thu 14:15 H3

A new radio frequency quadrupole ion cooler for Accelerator Mass Spectrometry — •MARKUS SCHIFFER¹, OSCAR MARCHHART², SUSAN HERB¹, MARTIN MARTSCHINI², ROBIN GOLSER², and ALFRED DEWALD¹ — ¹University of Cologne, Institute for Nuclear Physics, Germany — ²University Vienna, Faculty of Physics, Vienna Environmental Research Accelerator (VERA), Austria

Ion Laser Interaction Mass Spectrometry (ILIAMS) has demonstrated a high isobar suppression capability for a variety of radionuclides by selective laser photodetachment of decelerated ion beams in a gas-filled radio frequency quadrupole cooler (RFQ). Furthermore, the admixture of O_2 gas to the helium buffer gas has revealed an impressively high isobar suppression, larger 10^5 in the case of ${}^{90}\text{Sr}/{}^{90}\text{Zr}$, at the Vienna Environmental Research Accelerator (VERA), even without the use of the laser. Therefore, we started to develop a radio frequency quadrupole cooler designed for the deceleration and trapping of ion beams with high beam emittance like heavy molecular anions, e.g. $^{90}{\rm SrF}_3.$ The new ion cooler will be used with gas reactions and is intended to be improved by the addition of a laser in a later phase. This contribution will present details of the RFQ, like the ion optic calculation of the injection electrodes and the guiding field. Different guiding field structures will be compared by the calculation of multipole expansion coefficients. Additionally, a radio frequency resonance tuning and impedance matching system for heavy radionuclide applications will be presented.

MS 8.3 Thu 14:30 H3 Relative Formation Probabilities for Fluoride and Oxyfluoride Anions of U, Np, Pu and Am in Accelerator Mass Spectrometry Measurements at VERA — •ANDREAS WIEDERIN¹, ROBIN GOLSER¹, KARIN HAIN¹, MICHAEL KERN¹, AYA SAKAGUCHI², and PETER STEIER¹ — ¹University of Vienna, Faculty of Physics - Isotope Physics — ²University of Tsukuba, Faculty of Pure and Applied Science

The relative formation probabilities for a range of (oxy-)fluoride molecular anions of uranium, neptunium, plutonium, and americium during the sputtering process in an AMS ion source from an iron oxide matrix mixed with PbF₂ have been systematically investigated at VERA. Identifying this distribution is an important step towards the separation of U and Np isobars via element selective photodetachment and reactive gases in the ILIAMS ion-cooler. A suitable choice of extracted molecular anions can be used to suppress U by an order of magnitude compared to Np. Finally, the distribution and in particular the AF₄⁻

to AF_5^- ratio can help to identify isobaric contaminations for the mentioned actinides. This method was used to estimate the co-production of 236 U during Th irradiation which is considered for the production of 236 Np, a potential isotopic spike for 237 Np.

MS 8.4 Thu 14:45 H3

Increasing the ionization yield for the detection of 236 U and 233 U by AMS — •MICHAEL KERN, KARIN HAIN, PETER STEIER, ANDREAS WIEDERIN, and ROBIN GOLSER — University of Vienna, Faculty of Physics - Isotope Physics, Vienna, Austria

The detection efficiency of Accelerator Mass Spectrometry for uranium isotopes ²³⁶U or ²³³U is mainly limited by the rather low yield of the corresponding negative ions extracted from a caesium sputter ion source ($\approx 10^{-4}$). With our new sample preparation method environmental U is embedded in only 200 µg Fe₂O₃ matrix which is then mixed with PbF₂. Extracting U as UF₅⁻ instead of UO⁻ yields an improvement in detection efficiency of up to a factor of 10. Thus significantly shortened measurement duration can be obtained, while maintaining the same statistical uncertainty. UF₅⁻ extraction seems advantageous for the suppression of molecular isobaric background (²³³ThH³⁺, ²³³UH³⁺) and allows operation at lower He stripper gas pressure. This presentation will give detailed insights on the new sample preparation as well as ion current characteristics and method verification.

MS 8.5 Thu 15:00 H3 Low-level ^{166m}Ho measurements with AMS for the ECHo-

project — •GEORG RUGEL¹, SEBASTIAN BERNDT², CHRISTOPH E. DÜLLMANN^{2,3,4}, HOLGER DORRER², OLIVER FORSTNER^{5,6}, TOM KIECK^{2,7}, NINA KNEIP^{2,7}, JOHANNES LACHNER¹, SILKE MERCHEL^{1,8}, CARLOS VIVO-VILCHES¹, ANTON WALLNER¹, and KLAUS WENDT⁷ — ¹Accelerator Mass Spectrometry and Isotope Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden — ²Department of Chemistry, Johannes Gutenberg University, Mainz — ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt — ⁴Helmholtz Institute Mainz, Mainz — ⁵Friedrich-Schiller-University Jena — ⁶Helmholtz Institute Jena, Jena — ⁷Institute of Physics, Johannes Gutenberg University — ⁸Isotope Physics, Faculty of Physics, University of Vienna, Vienna, Austria

The Electron Capture in ¹⁶³Ho experiment (ECHo) aims at measuring the mass of ν_e by analysing the EC spectrum of the long-lived radionuclide $^{163}\mathrm{Ho}\;(\mathrm{T}_{1/2}=4570\,\mathrm{a})$ with a metallic magnetic calorimeter (MMC). For the determination of a reasonable upper limit for the neutrino mass it is mandatory to keep any contamination with the longlived radionuclide $^{166m}\mathrm{Ho}$ nine orders of magnitude below the $^{163}\mathrm{Ho}$ content. The ion-implantation of ultra-pure 163 Ho into a MMC for the experiment is carried out by the RISIKO mass separator. The separation from 166m Ho, however, cannot be quantified to such low levels as needed. Here we present our approach to determine the corresponding low isotopic ratio with accelerator mass spectrometry (AMS). This requires the formation of negative ions, we find the highest negative ion yield for the anion HoO_2^- . For first tests ¹⁶⁵Ho was implanted by RISIKO in various metal foils and we obtained results for the Ho detection efficieny. This allows for extrapolations for the expected measurement limit of the 166m Ho/ 163 Ho ratio.

MS 9: New Developments II

Time: Friday 10:45-12:00

Invited Talk MS 9.1 Fri 10:45 H2 Spatially resolved ultra-trace analysis of actinides on hot particles by resonant laser-SNMS — •HAUKE BOSCO¹, MAR-TIN WEISS¹, MANUEL RAIWA¹, NINA KNEIP², KLAUS WENDT², and CLEMENS WALTHER¹ — ¹Institute of Radioecology and Radiation Protection, Leibniz University Hannover — ²Institute of Physics, Johannes Gutenberg-University Mainz

A titanium:sapphire resonance excitation laser system for element selective ionization of sputtered neutrals has been linked to a commercial TOF-SIMS for spatially resolved ultra-trace isotope detection [1]. The system allows analysis of stable and radioactive isotope ratios with 70 nm spatial resolution. Synthetic as well as environmental samples are measured on either conducting or non-conducting samples. As an example, investigations of hot particles from the Chernobyl exclusion zone will be presented and discussed with respect to isotopic ratios of uranium, plutonium, americium and strontium. By suppression of isobaric interferences minor acitinide isotopes on the scale of a few fg were detected within the analyzed fuel matrix. Additionally, Pu-238 was unambiguously identified despite five orders of magnitude of U-238 isobaric contamination. Ongoing excitation scheme development, influences of the plutonium hyperfine structure on the resulting isotope signal and single particle analysis will be presented as a part of the BMBF funded project SIRIUS.

[1] Franzmann et al., Resonant laser-SNMS for spatially resolved and element selective ultra-trace analysis of radionuclides, JAAS 2018

Invited Talk MS 9.2 Fri 11:15 H2 Multi-reflection time-of-flight mass spectrometry for cluster research — •PAUL FISCHER and LUTZ SCHWEIKHARD — Institut für

Location: H2

Physik, Universität Greifswald, 17487 Greifswald, Germany

Multi-reflection time-of-flight mass spectrometry (MR-ToF MS) is known as a powerful tool for precision mass measurements [1] and high-resolution isobar separation [2] in nuclear physics. In atomic and molecular physics, MR-ToF devices are appreciated for their characteristics as electrostatic ion traps [3]. However, they are often operated in non-bunching mode, abandoning high resolving powers in favor of easier interaction prerequisites.

At the University of Greifswald, MR-ToF MS is applied for highresolution investigations of atomic clusters. Techniques for in-trap photodissociation, tandem MR-ToF MS, and the study of time-delayed dissociation processes have been developed. Examples include the dissociation behavior of bismuth clusters [4], the change thereof resulting from doping with a single lead atom [5], and the delayed dissociation of indium clusters [6].

- [1] F. Wienholtz et al., Nature 498:346-349 (2013)
- [2] R.N. Wolf at al., Phys. Rev. Lett. 110:041101 (2013)
- [3] D. Zajfman et al., Phys. Rev. A 55:R1577-R1580 (1997)
- [4] P. Fischer at al., Eur. Phys. J. D 73:105 (2019)
- [5] P. Fischer at al., Phys. Rev. Research 1:033050 (2019)
- [6] P. Fischer at al., Phys. Rev. Research 2:043177 (2020)

MS 9.3 Fri 11:45 H2 Development of a Python application for isotope pattern analysis of small metal complexes measured with an Orbitrap analyzer and electrospray ionization — •ANNA KOGIOMTZIDIS, JULIA STADLER, MICHAEL STEPPERT, and CLEMENS WALTHER — Institute of Radioecology and Radiation Protection, Leibniz University Hannover, Germany

Isotope pattern analysis is a well established method for the evaluation of mass spectral data. Especially in metabolomics and proteomics it is widely used. While these research fields concentrate mainly on relatively large biomolecules, this work focuses on metal ions complexed by anorganic or small organic ligands. This type of compound is relevant for instance in the context of radioecology when studying the transport behavior of radionuclides in different chemical environments.

A Python module plus graphical interface was developed to assist with the investigation of metal complexes by mass spectrometry. The application includes two main functionalities. First, an algorithm was implemented to scan mass spectra for peak groups matching a given isotope pattern in order to identify compounds possibly containing an element of interest. Second, it is possible to search for specific chemical species defined by molecular formulas. Further, some additional features including data preprocessing and calculation of possible sum formulas for a given signal are available.

The software was tested with several solutions of europium, zirconium and uranium with natural isotope abundances to examine a range of different isotopic configurations.