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QI 2: Quantum Computing and Algorithms I

Time: Monday 10:45–12:45 Location: H5

QI 2.1 Mon 10:45 H5
Training variational quantum algorithms is NP-hard —
∙Lennart Bittel and Martin Kliesch — Heinrich-Heine-
Universität, Düsseldorf, Deutschland
Variational quantum algorithms (VQAs) are proposed to solve relevant
computational problems on near term quantum devices. Popular ver-
sions are variational quantum eigensolvers (VQEs) and quantum ap-
proximate optimization algorithms (QAOAs) that solve ground state
problems from quantum chemistry and binary optimization problems,
respectively. They are based on the idea to use a classical computer
to train a parameterized quantum circuit. We show that the corre-
sponding classical optimization problems are NP-hard. Moreover, the
hardness is robust in the sense that for every polynomial time algo-
rithm, there exists instances for which the relative error resulting from
the classical optimization problem can be arbitrarily large, assuming
P =/= NP. Even for classically tractable systems, composed of only
logarithmically many qubits or free fermions, we show that the opti-
mization is NP-hard. This elucidates that the classical optimization is
intrinsically hard and does not merely inherit the hardness from the
ground state problem. Our analysis shows that the training landscape
can have many far from optimal persistent local minima. This means
gradient and higher order decent algorithms will generally converge to
far from optimal solutions.

QI 2.2 Mon 11:00 H5
Linear growth of quantum circuit complexity — ∙Jonas
Haferkamp1, Philippe Faist1, Naga Kothakonda1, Jens
Eisert1, and Nicole Yunger Halpern2 — 1Freie Universität Berlin
— 2Harvard-Smithsonian, ITAMP
Quantifying quantum states’ complexity is a key problem in various
subfields of science, from quantum computing to black-hole physics.
We prove a prominent conjecture by Brown and Susskind about how
random quantum circuits’ complexity increases. Consider constructing
a unitary from Haar-random two-qubit quantum gates. Implementing
the unitary exactly requires a circuit of some minimal number of gates
- the unitary’s exact circuit complexity. We prove that this complexity
grows linearly in the number of random gates, with unit probability,
until saturating after exponentially many random gates. Our proof is
surprisingly short, given the established difficulty of lower-bounding
the exact circuit complexity. Our strategy combines differential topol-
ogy and elementary algebraic geometry with an inductive construction
of Clifford circuits.

QI 2.3 Mon 11:15 H5
Understanding Variational Quantum Learning Models —
Matthias C. Caro1,2, Jens Eisert3,4, Elies Gil-Fuster3,
∙Johannes Jakob Meyer3,5, Maria Schuld6, and Ryan Sweke3

— 1Department of Mathematics, Technical University of Munich,
Garching, Germany — 2Munich Center for Quantum Science and
Technology (MCQST), Munich, Germany — 3Dahlem Center for Com-
plex Quantum Systems, Freie Universität Berlin, Berlin, Germany —
4Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Ger-
many — 5QMATH, University of Copenhagen, Copenhagen, Denmark
— 6Xanadu, Toronto, ON, M5G 2C8, Canada
Finding practically relevant applications for noisy intermediate-scale
quantum devices is an active frontier of quantum information research.
Using them to execute parametrized quantum circuits used as learn-
ing models is a possible candidate. We show that the possible output
functions of such learning models can be elegantly expressed by gener-
alized trigonometric polynomials, whose available frequencies are de-
termined by the spectra of the Hamiltonians used for the data encoding
[1]. This approach allows for an intuitive understanding of quantum
learning models and underlines the important role of data encoding in
quantum machine learning. Building on this, we exploit this natural
connection to give generalization bounds which explicitly take into ac-
count how a given quantum learning model is encoding the data [2].
These bounds can act as a guideline to select and optimize quantum
learning models in a structural risk minimization approach. Based on
[1] arXiv:2008.08605 and [2] arXiv:2106.03880.

QI 2.4 Mon 11:30 H5
Generalization in quantum machine learning from few train-

ing data — ∙Matthias C. Caro1,2, Hsin-Yuan Huang3,4, Marco
Cerezo5,6, Kunal Sharma7,8, Andrew Sornborger9,10, Lukasz
Cincio5, and Patrick J. Coles5 — 1Department of Mathemat-
ics, TU Munich, Garching, Germany — 2MCQST, Munich, Germany
— 3IQIM, Caltech, Pasadena, CA, USA — 4Department of Com-
puting and Mathematical Sciences, Caltech, Pasadena, CA, USA —
5Theoretical Division, LANL, Los Alamos, NM, USA — 6Center for
Nonlinear Studies, LANL, Los Alamos, NM, USA — 7QuICS, Univer-
sity of Maryland, College Park, MD, USA — 8Department of Physics
and Astronomy, Louisiana State University, Baton Rouge, LA USA —
9Information Sciences, LANL, Los Alamos, NM, USA — 10Quantum
Science Center, Oak Ridge, TN, USA
Modern quantum machine learning (QML) methods involve variation-
ally optimizing a parameterized quantum circuit on training data, and
then make predictions on testing data. We study the generalization
performance in QML after training on 𝑁 data points. We show: The
generalization error of a quantum circuit with 𝑇 trainable gates scales
at worst as

√︀
𝑇/𝑁 . When only 𝐾 ≪ 𝑇 gates have undergone substan-

tial change in the optimization process, this improves to
√︀

𝐾/𝑁 .
Core applications include significantly speeding up the compiling of

unitaries into polynomially many native gates and classifying quantum
states across a phase transition with a quantum convolutional neural
network using a small training data set. Our work injects new hope
into QML, as good generalization is guaranteed from few training data.

QI 2.5 Mon 11:45 H5
Quantum Autoencoders for Error Correction — ∙David
Locher1, Lorenzo Cardarelli2, and Markus Müller1,2 —
1Institute for Quantum Information, RWTH Aachen University, D-
52056 Aachen, Germany — 2Peter Grünberg Institute, Theoretical
Nanoelectronics, Forschungszentrum Jülich, D-52425 Jülich, Germany
The operation of reliable large-scale quantum computers will foresee-
ably require quantum error correction procedures, in order to cope with
errors that dynamically occur during storage and processing of frag-
ile quantum information. Classical machine learning approaches, e.g.
neural networks, have been proposed and successfully used for flexible
and scalable strategies for quantum error correction. Complementary
to these efforts, we investigate the potential of quantum machine learn-
ing for quantum error correction purposes. Specifically, we show how
quantum neural networks, in the form of quantum autoencoders, can
be trained to learn optimal strategies for active detection and correc-
tion of errors, including possibly correlated bit-flip and depolarizing
noise, as well as qubit loss. We highlight that the denoising possi-
bilities of quantum autoencoders are not limited to the protection of
specific states but extend to entire logical codespaces. In addition,
we show that quantum neural networks can discover new encodings,
optimally adapted to the underlying noise.

QI 2.6 Mon 12:00 H5
Gottesman-Kitaev-Preskill bosonic error correcting codes: a
lattice perspective — Jonathan Conrad, ∙Francesco Arzani,
and Jens Eisert — Freie Universität Berlin, Arnimallee 14, 14195
Berlin
Bosonic error correcting codes (ECC) protect the state of a finite-
dimensional quantum system by embedding it in the infinite-
dimensional Hilbert space of an ensemble of harmonic oscillators.
Gottesman-Kitaev-Preskill (GKP) codes are a class of bosonic ECC
that rely on translation symmetries of the code-states to detect and
correct common errors affecting physical realizations of harmonic os-
cillators (e.g. photon loss in electromagnetic modes). For example,
imposing the correct symmetries on a single oscillator restricts the
state-space to that of a qubit. To achieve better noise resilience, the
code can be concatenated with a qubit-level ECC. This allows to di-
rectly apply the machinery developed for qubits. However, the transla-
tion symmetries also establish a formal connection with lattices, which
is not fully exploited by usual approaches to concatenated codes (CC).
Furthermore, CC are special cases, which are not guaranteed to be
optimal given the underlying bosonic nature of the system.

We examine general GKP codes, including concatenated GKP codes,
through the lens of lattice theory to understand the structure of this
class of stabilizer codes. We derive formal bounds on code parameters,
show how different decoding strategies are related and point to natural
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resource savings that have remained hidden in previous approaches.

QI 2.7 Mon 12:15 H5
Scalable approach to many-body localization via quantum
data — ∙Alexander Gresch, Lennart Bittel, and Martin Kli-
esch — Quantum Technology Group, Heinrich Heine University Düs-
seldorf
We are interested in how quantum data can allow for practical solutions
to otherwise difficult computational problems. Such a notoriously dif-
ficult phenomenon from quantum many-body physics is the emergence
of many-body localization (MBL). So far, is has evaded a comprehen-
sive analysis. In particular, numerical studies are challenged by the
exponential growth of the Hilbert space dimension. As many of these
studies rely on exact diagonalization of the system’s Hamiltonian, only
small system sizes are accessible.

In this work, we propose a highly flexible neural network based learn-
ing approach that, once given training data, circumvents any com-
putationally expensive step. In this way, we can efficiently estimate
common indicators of MBL such as the adjacent gap ratio or entropic
quantities. Moreover, our estimator can be trained on data from var-
ious system sizes at once which grants the ability to extrapolate from
smaller to larger ones. We hope that our approach can be applied to

large-scale quantum experiments to provide new insights into quantum
many-body physics.

QI 2.8 Mon 12:30 H5
Fermion Sampling — Michal Oszmaniec1, Ninnat Dangniam1,
Mauro Morales2, and ∙Zoltan Zimboras3,4 — 1Center for The-
oretical Physics, Polish Academy of Sciences — 2University of Tech-
nology Sydney, Australia — 3Wigner Research Centre for Physics,
Budapest, Hungary — 4BME-MTA Lendület Quantum Information
Theory Research Group, Budapest, Hungary and Mathematical Insti-
tute, Budapest University of Technology and Economics, Budapest,
Hungary
In this talk, we present a quantum advantage scheme which is a
fermionic analogue of Boson Sampling: Fermion Sampling with magic
input states. We argue that this scheme merges the strengths of Ran-
dom Circuit Sampling and Boson Sampling. On the one hand side, we
provide hardness guarantees for this scheme which is at a comparable
level to that of the state-of-the-art hardness guarantees for Random
Circuit Sampling, surpassing that of Boson Sampling. On the other
hand, we argue that there are verification schemes of Fermion Sampling
circuits that are stronger than those for Random Circuit Sampling. We
also discuss the experimental feasibility of our scheme.
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