KFM 2: Materials for Energy Storage

Chairman: Theo Scherer (KIT Karlsruhe)

Time: Tuesday 11:15–11:45

KFM 2.1 Tue 11:15 H5

Self-assembled monolayers of *para*-aminobenzoic acid on V_2O_5 - a theoretical and experimental study — •FABIAN DIETRICH¹, JUAN FERNANDEZ², EDUARDO CISTERNAS¹, and MARCOS FLORES² — ¹Universidad de La Frontera, Temuco, Chile — ²Universidad de Chile, Santiago, Chile

Lithium ion batteries (LIB) can contribute to environment-friendly energy supply due to the storage for renewable energies. As important part of their characteristics, the number of charge/discharge cycles and the capacity after several cycling processes strongly depend on the electro-chemical reactions taking place on the surface of the electrodes, *e.g.* building the so called solid-electrolyte interface (SEI). To control the formation of the SEI, the surface can be functionalized with organic molecules, building a self-assembled monolayer (SAM).

We investigated the assembling of para-aminobenzoic acid (pABA) on V₂O₅, a potential cathode material for LIB, in a collaborative experimental (XPS) and theoretical study. The simulations using Density Functional Theory with dispersion corrections include several configurations letting different sides of the pABA interact with the V2O5 surface. We found out that for low concentrations, the molecules prefer a lying-down configuration building a more organized SAM. From the comparison with the experimental data, a high coverage of the surface with pABA can be concluded. Hence, we infer the existence of the up-standing configuration and also the building of a well-ordered SAM.

Location: H5

KFM 2.2 Tue 11:30 H5

Thermoelectric properties of novel semimetals: A case study of YbMnSb2 — •YU PAN¹, FENG-REN FAN¹, XIAOCHEN HONG², BIN HE¹, CONGCONG LE¹, WALTER SCHNELLE¹, YANGKUN HE¹, KAZUKI IMASATO³, HORST BORRMANN¹, CHRISTIAN HESS², BERND BÜCHNER², YAN SUN¹, CHENGUANG FU¹, JEFFREY SNYDER³, and CLAUDIA FELSER¹ — ¹Department of Solid State Chemistry, Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany — ²Leibniz-Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstraße 20, Dresden 01069, Germany — ³Materials Science & Engineering (MSE), Northwestern University, Evanston, IL 60208, USA

The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric perfor-mance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient is achieved. The present work highlights the potential of such novel semimetals for high thermo-electric performance.