Time: Thursday 11:45-12:45

Location: H3

SOE 6.2 Thu 12:15 H3

SOE 6.1 Thu 11:45 H3

Understanding force directed layouts through latent space models — •FELIX GAISBAUER, ARMIN POURNAKI, SVEN BANISCH, and ECKEHARD OLBRICH — Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

This contribution brings together two strands of research: Latent space approaches to network analysis and force-directed layout algorithms. The former can be considered as extensions of spatial random graph models for social networks, which have the goal of embedding a graph/network in an underlying social space [1] and have been employed successfully in the estimation of ideological positions from follower networks on Twitter [2]. The latter are used ubiquitously for data exploration, illustration, and analysis. Nevertheless, an interpretation of the outcomes of graph drawings with force-directed algorithms is not straightforward. We show that interpretability can be provided by random graph models in which the nodes are positioned in a latent space. The closer the positions of the nodes, the more probable it is that they are connected. We show that force-directed layout algorithms can be considered as maximum likelihood estimators of such models. We also present ready-to-use implementation of the layout algorithm and show its application to Twitter retweet networks.

[1] P. D. Hoff, A. E. Raftery, and M. S. Handcock (2002). Latent space approaches to social network analysis. Journal of the American Statistical association, 97(460), 1090-1098. [2] P. Barberá (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Political analysis, 23(1), 76-91.

Space Balanced Triad Formation explained by Dyadic Interactions NISCH. — •TUAN PHAM^{1,2}, JAN KOBBEL^{1,2}, BUDDLE HANEL^{1,2}, and STE-

- •TUAN PHAM^{1,2}, JAN KORBEL^{1,2}, RUDOLF HANEL^{1,2}, and STEFAN THURNER^{1,2,3} - ¹Medical University of Vienna - ²Complexity Science Hub Vienna - ³Santa Fe Institute

The evolution of social (signed) triads towards so-called balanced states with either one or three positive links often results in the formation of clusters of positively-linked agents. We argue that -surprisingly- such cluster formation can emerge from dyadic interactions if homophily between agents is present. We show this in a Hamiltonian model, where every agent is linked to K others and holds binary opinions on G issues, in an opinion vector \mathbf{s}_i . If two agents i and j are connected by a link J_{ij} then $J_{ij} = \operatorname{sign}(\mathbf{s}_i \cdot \mathbf{s}_j)$. Without knowledge of the triads in their neighbourhoods, agents modify their opinions so as to minimize a social tension, $H^{(i)}$, defined via the weighted sum of opinion overlaps with friends and opinion discordance with enemies: $H^{(i)} = -\frac{\alpha}{G} \sum_{j:J_{ij}>0} \mathbf{s}_i \mathbf{s}_j + \frac{1-\alpha}{G} \sum_{j:J_{ij}<0} \mathbf{s}_i \mathbf{s}_j, \text{ where } \alpha \text{ is the set of the set of$ relative strength of positive interactions to that of negative ones. The model exhibits a transition from unbalanced- to balanced society at a critical temperature which depends on (G, K, α) . As α exceeds 1/2, another transition between steady states with different fractions of balanced triads occurs. We show that the model explains actual data of triad statistics in social networks. The model produces z-scores for triads that is compatible with empirical values in real social networks, such as the Pardus computer game and the United Nations General Assembly.