VA 1: Rarefied gas flows and novel approaches for particle simulation

Time: Monday 10:00-11:45

Location: H2

Invited Talk VA 1.1 Mon 10:00 H2 Deterministic and stochastic numerical approaches in Rarefied Gas Dynamics — •STYLIANOS VAROUTIS and CHRISTOS TANTOS — Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

During the last decade research in the field of rarefied gas dynamics has attracted a lot of attention. This refreshed interest is due to applications in the emerging field of nano- and micro-fluidics, as well as to the more traditional fields of vacuum technology and high altitude aerodynamics. Some of these applications may include important phenomena such as those related to polyatomic gases, chemical reactions, evaporation and condensation. The gas rarefaction is specified by the Knudsen number (Kn), which is defined as the ratio of the mean free path over a characteristic length of the problem. In general, when the flow is considered as far from local equilibrium, then the well-known Navier-Stokes equations are not valid anymore. In this case, two main numerical approaches can be implemented. The first approach is based on the kinetic theory of gases as expressed by the Boltzmann equation or its associated kinetic models, in which a deterministic numerical solution is performed. The second approach is the Direct Simulation Monte Carlo (DSMC) method. Within the above framework, the first part of this talk will be devoted to the presentation of the aforementioned numerical approaches, while the second part will be devoted to the presentation of illustrative examples, as for instance, the modelling of the particle exhaust of a nuclear fusion reactor and the numerical modelling of a cryopump.

Invited TalkVA 1.2Mon 10:30H2Deterministic modeling of neutral gas flows of tokamaknuclear fusion devices — •CHRISTOS TANTOS and STYLIANOSVAROUTIS — Karlsruhe Institute of Technology, Eggenstein-
Leopoldshafen, Germany

Over the last few years much effort has been invested in modeling transport phenomena appearing in the complex geometry of the divertor region in tokamak fusion devices. Depending on the upstream plasma conditions, the flow reference Knudsen number, defined as the ratio of the mean free path over a characteristic length, may vary over a wide range. The rarefied flow behavior in these systems cannot be properly captured by the typical Navier-Stokes-Fourier approach and must be described by the integro-differential Boltzmann equation or reliable kinetic model equations. The Discrete Velocity Method (DVM) has developed into one of the most common techniques for solving the Boltzmann equation and the kinetic models. As it is well known simulating multidimensional rarefied gas problems based on the Boltzmann equation is computationally time consuming. Therefore, successful implementation of reliable kinetic models in such problems is important. In the present work, the Boltzmann equation is approximated by the well-known Bhatnagar Gross Krook (BGK) and Shakhov kinetic models supplemented with the deterministic discrete velocity method. Results are presented for He and D2 covering a wide range of the involved parameters. Extended comparisons between the deterministic approach and the stochastic Direct Simulation Monte Carlo (DSMC) method are presented.

Invited Talk VA 1.3 Mon 11:00 H2 Stochastic Simulation of Mercury Diffusion Pumps Using Direct Simulation Monte Carlo — •TIM TEICHMANN, CHRISTIAN DAY, and THOMAS GIEGERICH — Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

Currently, a continuously working pump train for DEMO (the European demonstration fusion power plant) is under active development. Mercury driven diffusion pumps have been chosen as possible candidates for the high vacuum pumping of the exhaust gases. In order to design and optimize diffusion pumps for DEMO, a reliable numerical simulation method is required.

The numerical simulation of the DEMO diffusion pumps is a complex challenge as the gas flow in the pump spans a wide Knudsen number range. Typical inlet pressures of the diffusion pumps for DEMO are expected to be in the order of 10^{-3} Pa during dwell and up to 1 Pa during burn respectively. This is equivalent to estimated Knudsen numbers in the range of 10 to 0.01. As the Navier-Stokes equations lose their validity at Kn > 0.1, classic continuum solvers cannot be applied to the problem at hand. Therefore, the Boltzmann equation has to be solved to describe this flow regime. In this case the Direct Simulation Monte Carlo (DSMC) method was chosen to solve the Boltzmann equation. This presentation focuses on the application of DSMC on the simulation of diffusion pumps.

15 min. break