O 23: Poster Session II: Topology and symmetry-protected materials

Time: Monday 13:30–15:30

Location: P

O 23.1 Mon 13:30 P

Discovery of chiral topological semimetals with multifold fermions and long surface Fermi-arcs — •NIELS B. M. SCHRÖTER — Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

Chiral topological semimetals (which possess neither mirror nor inversion symmetries) are a new family of topological materials that are expected host numerous novel phenomena, such as multifold fermions with large topological charge, long Fermi-arc surface states, and a quantized response to circularly polarized light. However, until recently, all known topological semimetals crystallized in space groups that contain mirror operations, which means that the aforementioned phenomena must vanish.

Here, I will present evidence from angle-resolved photoelectron spectroscopy that a family of chiral intermetallic catalysts, including PtAl and PdGa, are chiral topological semimetals. We directly visualize the multifold fermions in these compounds and show that they carry the largest possible Chern number that can be realized in any solid by imaging their extremely long surface Fermi-arcs and resolving a spinorbit coupling induced band splitting. We also show experimentally that there is a direct relationship between the handedness of the crystal structure and the electronic chirality (i.e. the Chern number sign) of the multifold fermions. This finding demonstrates that structural chirality can be used as a control parameter to manipulate phenomena that are sensitive to electronic chirality, such as the direction of topological photocurrents.

O 23.2 Mon 13:30 P

Spin and orbital texture of the Weyl semimetal MoTe₂ studied by spin-resolved momentum microscopy — •KENTA HAGIWARA¹, XIN LIANG TAN¹, PHILIPP RÜSSMANN¹, YING-JIUN CHEN^{1,2}, KOJI FUKUSHIMA³, KEIJI UENO³, VITALIY FEYER¹, SHIGEMASA SUGA^{1,4}, STEFAN BLÜGEL¹, CLAUS M. SCHNEIDER^{1,2}, and CHRISTIAN TUSCHE^{1,2} — ¹Peter Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich — ²Fakultät für Physik, Universität Duisburg-Essen, 47057 Duisburg — ³Saitama University, 338-8570, Saitama, Japan — ⁴Osaka University, 567-0047, Osaka, Japan

Weyl semimetals host chiral fermions in solids as a pair of nondegenerate linear dispersions with band crossing points in bulk. These Weyl points are protected by topology, forming a Fermi arc, which is a connection between a pair of Weyl points with opposite chirality at the surface. Momentum microscopy provides two dimensional photonelectron maps of the in-plane crystal momentum over the whole Brillouin zone, simultaneously. Together with an imaging spin filter, we have revealed the spin-resolved electronic structure of the type-II Weyl semimetal $1T_d$ MoTe₂ in the full Brillouin zone. Combined with the use of differently polarized light, we have revealed the spin texture and the orbital texture of the Weyl cones in comparison with firstprinciples calculations. We give evidence that a pair of Weyl cones exhibits a strong circular dichroism with reversed sign, indicating the different charge of the respective Weyl points in the Fermi surface.

O 23.3 Mon 13:30 P

Observation of backscattering induced by magnetism in a topological edge state — •BERTHOLD JAECK^{1,2}, YONG-LONG XIE^{1,3}, BOGDAN ANDREI BERNEVIG¹, and ALI YAZDANI¹ — ¹Princeton University, Joseph Henry Laboratories and Department of Physics, Princeton, USA — ²Present Address: The Hong Kong University of Science and Technology, Department of Physics, Clearwater Bay, Kowloon, Hong Kong — ³Present Address: Harvard University, Department of Physics, Cambridge, USA

We have investigated the effects of time-reversal symmetry breaking on the topological edge state of bismuth. Using spectroscopic imaging and spin-polarized measurements with the STM, we have compared quasiparticle interference (QPI), occurring in the edge state of a pristine bismuth bilayer with that occurring in the edge state of a bilayer, which is terminated by ferromagnetic iron clusters. Our experiments on the decorated bilayer edge reveal an additional QPI branch that can be associated with spin-flip scattering across the Brioullin zone center between time-reversal band partners. The observed QPI characteristics exactly match with theoretical expectations for a topological edge state, having one Kramer's pair of bands. Our results provide further evidence for the non-trivial nature of bismuth and, in particular, demonstrate backscattering inside a helical topological edge state induced by broken TRS through local magnetism (1).

This work is supported by the ONR, the Moore foundation, NSF-DMR, NSF-MRSEC and the Humboldt foundation.

(1) B. Jäck et al., PNAS 117 (28), 16214-16218 (2020)

O 23.4 Mon 13:30 P ucture of the potential

Unveiling the complex band structure of the potential non-symmorphic topological insulator TaNiTe_2 — •TIM FIGGEMEIER¹, JENNIFER NEU², SIMON MOSER³, DAVID J. SINGH⁴, THEO M. SIEGRIST^{2,5}, HENDRIK BENTMANN¹, and FRIEDRICH REINERT¹ — ¹Experimentelle Physik VII, Universität Würzburg — ²National High Magnetic Field Laboratory, Tallahassee, Florida — ³Experimentelle Physik IV, Universität Würzburg — ⁴University of Missouri, Columbia, Missouri — ⁵College of Engineering, FAMU-FSU, Tallahassee, Florida

NbNiTe₂ and TaNiTe₂ are layered van-der-Waals systems. While NbNiTe₂ was discussed as a Weyl-semimetal candidate lately [1,2], TaNiTe₂ (space group #53, *Pmna*) is predicted to be a topological insulator with non-symmorphic crystal structure, characterized by a topological inavriant of $Z_4 = 1$, that have rarely been studied experimentally up to now [3]. In this study we investigated the electronic structure of TaNiTe₂ by means of angle-resolved photoemission (ARPES) experiments and first-principles calculations. Systematic photon-energy- and polarization-dependent measurements allow us to disentangle the highly complex band structure. Furthermore, we discuss indications for the presence of a topological surface state.

[1] Wang et al., PRB 95, 165114 (2017)

[2] Neu et al., PRB 100, 144102 (2019)

[3] Vergniory et al, Nature 544, 480-450 (2019)

O 23.5 Mon 13:30 P Molecular beam epitaxy and spectroscopy on the antiferromagnetic topological insulator (MnBi₂Te₄)(Bi₂Te₃) — •PHILIPP KAGERER^{1,2}, CELSO FORNARI^{1,2}, SEBASTIAN BUCHBERGER^{1,2}, SEGIO LUIZ MORELHAO³, RAPHAEL CRESPO VIDAL^{1,2}, ABDUL TCAKAEV^{4,2}, VOLODYMYR ZABOLOTNYY^{4,2}, EU-GEN WESCHKE⁵, VLADIMIR HINKOV^{4,2}, MARTIN KAMP⁶, BERND BÜCHNER^{2,7,8}, ANNA ISAEVA^{2,7,8}, HENDRIK BENTMANN^{1,2}, and FRIEDRICH REINERT^{1,2} — ¹Exp. Physik VII, Uni Würzburg — ²Würzburg-Dresden Cluster of Excellence ct.qmat — ³Inst. de Fisica, Univ. de Sao Paulo — ⁴Exp. Physik IV, Uni Würzburg — ⁵HZB Berlin — ⁶Phys. Inst. and RCCM, Uni Würzburg — ⁷Leibnitz IFW Dresden — ⁸Inst. für Festk.- und Materialphysik, TU Dresden

With the discovery of $MnBi_2Te_4$ as the first antiferromagnetic topological insulator, the material systems has emerged as a candidate for applications in quantum technologies [1]. Presently, the interplay between magnetism and topology in this compound is not fully understood. We have established the MBE-growth of $(MnBi_2Te_4)(Bi_2Te_3)$ heterostructures on BaF₂ as a basis for further research into the magnetic and electronic properties of these compounds [2]. MBE allows us to access and tailor various structural as well as electronic material properties and may give access to the underlying physics. We will present a study on the growth of the compound including an analysis of XRD patterns, as well as photoemission and XMCD/XLD results. [1] M.M. Otrokov et al., Nature 576, 416 (2019) [2] P. Kagerer et al., JAP 128, 135303 (2020)