O 41: Poster Session III: Poster to Mini-Symposium: Ultrafast surface dynamics at the space-time limit I

Time: Tuesday 10:30–12:30

O 41.1 Tue 10:30 P

Microscopic theory for the real-time magnetization dynamics in bilayer-surfaces driven by ultrafast laser pulses — •HANAN HAMAMERA¹, FILIPE SOUZA MENDES GUIMARAES², MANUEL DOS SANTOS DIAS¹, and SAMIR LOUNIS^{1,3} — ¹Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany — ²Jülich Supercomputing Centre, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany — ³Faculty of Physics, University of Duisburg-Essen, 47053 Duisburg, Germany

We study the ultrafast magnetic reversal of spin moments by a single laser pulse [1] from a microscopic point of view. This is done by employing a realistic tight-binding Hamiltonian parameterized from density functional theory calculations to describe the real-time evolution of the electronic states. We map the parameter space characterizing the magnetic reversal of bulk Ni by the applied laser pulse, explaining the underlying physics and dissecting various intertwined spin-dynamics regimes. The knowledge gained on Ni is then utilized to explore the case of bilayer surfaces such as Co/Pt(001), where the non-magnetic heavy-metal substrate provides additional channels for angular momentum dissipation via spin and orbital pumping mechanisms, as well as stronger spin-orbital conversion.

Work funded by the Palestinian-German Science Bridge (BMBF-01DH16027) and Horizon 2020-ERC (CoG 681405-DYNASORE). [1] J. Gorchon *et al.*, Appl. Phys. Lett. **111**, 042401 (2017)

O 41.2 Tue 10:30 P

Exchange-striction driven ultrafast nonthermal lattice dynamics in NiO — •YOAV WILLIAM WINDSOR¹, DANIELA ZAHN¹, ROBIN KAMRLA², JOHANNES FELDL³, HELENE SEILER¹, CHENG-TIEN CHIANG², MANFRED RAMMSTEINER³, WOLF WIDDRA², RALPH ERNSTORFER¹, and LAURENZ RETTIG¹ — ¹Fritz Haber Institute def MPG, Berlin — ²Martin-Luther-Universität Halle-Wittenberg — ³Paul-Drude-Institut für Festkörperelektronik, Berlin

We use femtosecond electron diffraction to study ultrafast lattice dynamics in the highly correlated antiferromagnetic (AF) semiconductor NiO. Using the scattering vector (Q) dependence of Bragg diffraction, we introduce a Q-resolved ensemble of temperatures describing the lattice, and identify a nonthermal lattice state with preferential displacement of O compared to Ni ions, which occurs within ~0.3 ps and persists for 25 ps. We associate this with transient changes to the AF exchange striction-induced lattice distortion, supported by the observation of a transient Q-asymmetry of Friedel pairs. Our observation highlights the role of spin-lattice coupling in routes towards ultrafast control of spin order.

 $${\rm O}$$ 41.3 Tue 10:30 P Heavy fermion dynamics in semimetallic and insulating

Location: P

phases — •Chul-hee Min¹, Michael Heber², Simon Müller³, Lukas Wenthaus², Steffen Palutke², Dmytro Kutnyakhov², Federico Pressacco², Lenart Dudy⁴, Matthieu Silly⁴, Hen-Drik Bentmann³, Kiana Baumgärtner³, Woojae Choi⁵, Yong Seung Kwon⁵, Markus Scholz⁶, Friedrich Reinert³, and Kai Rossnagel^{1,2} — ¹IEAP, CAU Kiel, Germany — ²DESY, Hamburg, Germany — ³EP7 and ct.qmat, University of Würzburg, Germany — ⁴Synchrotron-SOLEIL, Saint-Aubin, France — ⁵Dep. of EMS, DG-IST, South Korea — ⁶EuXFEL, Schenefeld, Germany

Due to time–energy correlation, heavy fermion systems with hard-todetect meV energy scales are expected to show relatively slow dynamics on ps time scales, which are relatively easy to measure. Using the freeelectron laser FLASH, we have performed time-resolved pump-probe photoemission spectroscopy (PES) of mixed valent $\text{TmSe}_{1-x}\text{Te}_x$ at a probe photon energy where the photoionization cross-section of the localized 4f states is two orders of magnitude higher than the ones of the other states. The system consists of two magnetic $4f^{12}$ and $4f^{13}$ configurations in the ground state and can be tuned from a semimetallic to an insulating phase via x without destroying the periodicity of the Tm ions. Here, we present and discuss the transient dynamics of the 4f states near E_F showing a remarkably strong dependence on x. Particularly, we identify a renormalized 4f peak whose time-domain signature is distinct from all other 4f multiplet peaks.

O 41.4 Tue 10:30 P Direct Access to Auger Recombination in Graphene — •MARIUS KEUNECKE¹, DAVID SCHMITT¹, MARCEL REUTZEL¹, MARIUS WEBER², CHRISTINA MÖLLER¹, G. S. MATTHIJS JANSEN¹, TRIDEV A. MISHRA³, ALEXANDER OSTERKORN³, WIEBKE BENNECKE¹, KLAUS PIERZ⁴, HANS WERNER SCHUMACHER⁴, DAVOOD MOMENI PAKDEHI⁴, DANIEL STEIL¹, SALVATORE R. MANMANA¹, SABINE STEIL³, STEFAN KEHREIN², HANS CHRISTIAN SCHNEIDER¹, and STEFAN MATHIAS¹ — ¹1. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany — ²TU Kaiserslautern, Kaiserslautern, Germany — ³Institut für Theoretische Physik, Georg-August-Universität Göttingen, Göttingen, Germany — ⁴Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

The Auger scattering channels are of fundamental importance in the non-thermal charge-carrier dynamics of graphene and govern processes of technological relevance like carrier-multiplication and population inversion. These band-crossing scattering events can be separated into impact excitation (IE) and Auger recombination (AR) events which increase (IE) or decrease (AR) the charge-carriers in the conduction band. In this contribution, we apply time-resolved momentum-microscopy to study the non-thermal charge carrier dynamics in *n*-doped graphene with energy and full in-plane momentum resolution. We report on direct experimental evidence and quantification of AR in graphene and support our conclusions by model calculations.

1