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Gaussian Approximation Potentials for Surface Catalysis —
oSiNA STockERD 2, GABOR CsANy1®, KarsTEN REUTER!2, and Jo-
HANNES T. MaRcGrRAF!2 — 1Technische Universitit Miinchen, Ger-
many — 2Fritz Haber Institut der Max Planck Gesellschaft, Berlin,
Germany — 3University of Cambridge, United Kingdom

Predictive-quality first-principles based microkinetic models are in-
creasingly used to analyze (and subsequently optimize) reaction mech-
anisms in heterogeneous catalysis. In full rigor, such models require
the knowledge of all possible elementary reaction steps and their corre-
sponding reaction barriers. Unfortunately, for complex catalytic pro-
cesses (such as the generation of ethanol from syngas) the number of
possible steps is so large that an exhaustive first-principles calculation
of all barriers becomes prohibitively expensive.

To overcome this limitation, we develop a machine learned (ML) in-
teratomic potential to model syngas conversion on Rhodium. This ML
potential can be used to determine adsorption energies, geometries and
reaction barriers for a large number of adsorbates at a fraction of the
computational cost of the underlying first-principles method. Specifi-
cally, we use the Gaussian Approximation Potential (GAP) framework
and explore iterative training and active learning to minimize the num-
ber of reference calculations. Here, the particular challenge lies in se-
lecting representative configurations that adequately characterize the
reactivity of molecules on a surface. Different training approaches will
be compared.
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Materials genes of heterogeneous catalysis from clean exper-
iments and AI — eLucas Forpal2, Luca M. GHIRINGHELLI}Z,
FrANK Rosowskr®, RoBERT ScHLOEGLY'#4, ANNETTE TRUNSCHKE!,
and MATTHIAS ScHEFFLER!:2 — !Fritz-Haber-Institut der Max-
Planck-Gesellschaft — 2Humboldt-Universitéit zu Berlin — BASF SE

— 4Max-Planck-Institut fiir Chemische Energiekonversion

Heterogeneous catalysis is an example of a complex materials func-
tion, governed by an intricate interplay of several processes, e.g. the
dynamic re-structuring of the catalyst material at reaction conditions
and different surface chemical reactions. Modelling the full catalytic
progression via first-principles statistical mechanics is impractical, if
not impossible. Instead, we show here how an artificial-intelligence
approach can be applied, even to an extremely small number of mate-
rials, to model catalysis and determine the key descriptive parameters
(materials genes) reflecting the processes that trigger, facilitate, or hin-
der the catalyst performance. We start from a consistent, unparalleled
experimental set of ”clean data”, containing nine vanadium-based oxi-
dation catalysts which were carefully synthesized, fully characterized,
and tested according to standardized protocols.[1] By applying the
symbolic-regression SISSO approach,[2,3] we identify correlations be-
tween the few most relevant materials properties and their reactivity.
This approach highlights the underlying physico-chemical processes,
and accelerates catalyst design. [1] A. Trunschke, et al., Top. Catal.
63, 1683 (2020). [2] R. Ouyang et al., Phys. Rev. Mater. 2, 083802
(2018). [3] R. Ouyang et al., J. Phys. Mater. 2, 024002 (2019).
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Artificial Intelligence controlls Nanocars across a racetrack
— eBERNHARD R. Ramsauer!, Oriver T. HorMann!, GRANT J.
SimpsoN?, and LEONHARD GRILLZ — lInstitute of Solid State Physics,
Graz University of Technology, Austria — 2Institute of Chemistry,
University of Graz, Austria

At the world’s first nanocar race at CEMES-CNRS, in France, par-
ticipants had to direct a nanocar across a “racetrack” [1]. In order to
control their nanocar, they had to move it using the tip of a STM,
albeit without making direct contact with the nanocar.

The physics that govern the molecule’s movement and rotation is
complex and involves the interaction between the molecule and the
tip as well as the molecule and the substrate [2]. Thus, it requires
some expertise from humans to manoeuvre the nanocar and predict
the outcome of a performed action.

Here, we show how an artificial intelligence (AI) based on rein-
forcement learning (RL) can be implemented to manipulate single
molecules. The Al is implemented in the form of an off-policy RL

Location: P

algorithm, known as the Q-Learning. In a prime example, the Al
manoeuvres the nanocar with a success rate of 89%.

Our results can be the basis for more sophisticated techniques of
molecular manipulations which allow identification and relocation of
single molecules at will, building the basis for future bottom-up con-
structions of nanotechnology.

[1] Nature Rev. Mater. 2, 17040 (2017)

[2] Nature Nanotech. 12, 604 (2017)
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Configurational polaron energies using machine learning —
eVIKTOR BIRscHITZKY, MIcHELE REeTicciorLr, and CESARE FRAN-
cHINI — University of Vienna, Faculty of Physics

Polarons are quasiparticles formed by the coupling of excess charge car-
riers with the phonon field. Polarons form preferentially at surfaces and
have a wide range of effects on the chemical and physical properties of
the hosting material.! First principles calculations of polarons confor-
mational energies typically require large supercells and long molecular
dynamics (MD) simulations, making the modeling of multipolaron sys-
tem within reasonable timescales very challenging. Here, we propose
a supervised machine learning scheme based on kernel-regression to
solve this problem by learning single polaron energies for the prototyp-
ical oxygen-defective rutile TiO2_,(110) surface, where each oxygen
vacancy provides two excess electrons. To achieve accurate predic-
tions on an ab initio MD database of polaronic energies? a descriptor
has been developed, which embodies the interactions between polarons
with defects and other localized charge carriers. Our results show that
the proposed ML method is able to expand the DFT database with
energetically more favorable polaron configurations — improving the
convex hull construction — and that generalization at arbitrary polaron
concentration and defect types is possible.

[1] C. Franchini et al., Polarons in Material, Nature Review Materi-
als, (2021)

[2] M. Reticcioli et al., Formation and dynamics of small polarons
on the rutile TiO2 surface, Physical Review B, (2018)
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Image-to-graph translation of atomic force microscopy im-
ages using graph neural networks — eNiko OINONEN!, FE-
por Urrevb?2, ALEXANDER ILIN?2, JuHO KaNNALAZ, and Apam
FosTer!%* — 1Department of Applied Physics, Aalto University,
Finland — 2Department of Computer Science, Aalto University, Fin-
land — 3Graduate School Materials Science in Mainz, Germany —
4WPI Nano Life Science Institute, Kanazawa University, Japan

The atomic force microscope (AFM) is an important tool in nanoscale
science for imaging surfaces and molecules on surfaces. State-of-the-art
AFM setups operating in vacuum at low temperatures are able to re-
solve features on the scale of individual atoms in molecules. However,
the process of interpreting the resulting AFM images in some cases
can be very challenging even for highly trained experts in the field.
‘We are working towards greater interpretability and greater automa-
tion of the processing of AFM images using machine learning methods
[1]. We are currently exploring the possibility of directly predicting the
atomic structure of the sample as a graph using graph neural networks
(GNN) [2]. We propose a GNN model which, conditioned on an AFM
image, iteratively constructs the graph of the sample molecule present
in the AFM image, following similar work by Li et al. [3]. This is still
a work-in-progress, but our initial results are showing promise.

[1] B. Alldritt et al. Sci. Adv. 6(9), eaay6913, 2020.

[2] P. W. Battaglia et al. arXiv:1806.01261.

[3] Y. Li et al. arXiv:1803.03324.
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Inverse problem to AFM imaging with iterative correction
loop — eProkop Haparal, Laurt Kurki?, Niko OiNoNEN?, FEDOR
Urtev?, FiLippo Feperict Canova?, Juno Kannara2?, and Apam
S. FosTER? — 'Department of Condensed Matter Theory, FZU AV
CR, v.v.i. — 2Department of Applied Physics, Aalto University Es-
poo, Finland

In the last year we pioneered machine-learning methods for reconstruc-
tion of molecular structure from high-resolution AFM images of non-
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planar organic molecules [1], which opens the way to broader applica-
tion of this experimental technique for single-molecule analysis [2] e.g.
in the pharmaceutical industry. Nevertheless, the robustness of one-
shot scheme relying on general-purpose convolutional neural networks
(CNN) seems limited as it discards physical insight. We attempt to
improve our method by integrating the CNN module together with an
image simulation module and interatomic force-field into an iterative
feedback loop, which gradually improves the match between reference
and simulated image. Such a scheme, with a machine-learned model
providing educated trial-move within a global optimization algorithm,
can be possibly useful also for solving other difficult inverse problems.
[1] Alldritt B., et al., Sci. Adv., vol. 6, no. 9, p. Eaay6913. (2020) [2]
Schuler, B., et.al. JACS, 137(31), 9870-9876. (2015)

O 55.7 Tue 13:30 P
Single-Atom Alloy Catalysts Designed by First-Principles
Calculations and Artificial Intelligence — Znong-Kang Han',
DEBALAYA SARKER!', RUNHAT OUYANG?, ALIAKSEI MAZHEIKA®, Y1
Gao*, and eSERGEY V. LEvcHENKO! — !Skoltech, Moscow, RU —
2Shanghai University, CN — 3Technische Universitaet Berlin, DE —
4Shanghai Advanced Research Institute, Chinese Academy of Sciences,
CN

Single-atom metal alloy catalysts (SAACs) have recently become a
very active new frontier in catalysis research. However, discovery of
new SAACs is hindered by the lack of fast yet reliable prediction of
the catalytic properties of the sheer number of candidate materials. In
this work, we address this problem by applying a compressed-sensing
data-analytics approach parameterized with density-functional inputs.
Besides consistently predicting high efficiency of the experimentally
studied SAACs, we identify more than two hundred yet unreported
promising candidates. Some of these new candidates are predicted
to exhibit even higher stability and efficiency than the reported ones.
Our study demonstrates the importance of breaking linear relation-

ships to avoid bias in catalysis design, as well as provides a recipe
for selecting best candidate materials from hundreds of thousands of
transition-metal SAACs for various applications. In addition, we de-
mosntrate how the data-mining approach subgroup discovery can be
used to obtain a qualitative understanding of complex symbolic regres-
sion models.
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Automated Tip Functionalization and Image interpretation
with Machine Learning in Atomic Force Microscopy — BEN-
JAMIN ALLDRITT!, CHEN XU!, PROkOP HaPaLAZ, ONDREJ KREJCI!,
eFEDOR URrEV!, FiLiPPo FEDERICI CaNoval3, Juno KannaLal,
PeTER LiLiEroTH!, and Apam FosTerb%5 — 1 Aalto University, Es-
poo, Finland — 2Czech Academy of Sciences, Prague, Czechia —
3Nanolayers Research Computing Ltd., London, UK — “Graduate
School Materials Science in Mainz, Germany — SWPI Nano Life Sci-
ence Institute, Kanazawa, Japan

Atomic force microscopy (AFM) is ubiquitous nanoscale characterisa-
tion technique to measure a 3D map of surface roughness at atomic
resolutions [1]. AFM data interpretation and quantitative analysis for
complex mixtures of molecules and bulky 3D molecules can be difficult
[2], due to the complex nature of contrast in AFM images, and need
significant acceleration and automation to make AFM technique avail-
able to a wide range of laboratories and clinics. Here, we introduce
a machine learning (ML) approach both for the preparation of AFM
experiments and for data interpretation in AFM. For the first objec-
tive our method involves a convolutional neural network (CNN) that
has been trained to analyse the quality of a CO-terminated tip. For
the interpretation of AFM images, we introduce ML image descriptors
characterising the molecular configuration, allowing us to predict the
molecular structure directly. [1] L. Gross et al., Science, vol. 325, no.
5944, (2009). [2] O. M. Gordon and P. J. Moriarty, Mach. Learn. Sci.
Technol., vol. 1, no. 2, (2020).



