MO 1: Quantum-Control

Time: Monday 10:30-11:30

MO 1.1 Mon 10:30 MO-H5 Coherent control of molecular nitrogen ionization — • AARON NGAI¹, MATTEO BONANOMI^{2,3}, LUKAS BRUDER¹, DAVID BUSTO^{1,4}, Carlo Callegari⁵, Paolo Carpeggiani⁶, Giovanni De Ninno^{5,7}, Michele Devetta², Michele Di Fraia⁵, Katrin Dulitz¹, David Faccialà², Luca Giannessi^{5,8}, Alexei Grum-Grzhimailo⁹, Elena Gryzlova⁹, Kenichi L. Ishikawa^{10,11}, Ioannis Makos¹, Praveen K. Maroju¹, Tommaso Mazza¹², Michael Meyer¹², Paolo PISERI³, OKSANA PLEKAN⁵, KEVIN C. PRINCE^{5,13}, GIUSEPPE Sansone¹, Simone Spampinati⁵, Frank Stienkemeier¹, Kiyoshi $UEDA^{14}$, and CATERINA VOZZI² — ¹Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Germany — ²Istituto di Fotonica e Nanotecnologie, CNR, Milano, Italy, — ³Dipartimento di Fisica and CIMaINa, Universitá degli Studi di Milano, Italy — ⁴Department of Physics, Lund University, Sweden — $^5\mathrm{Elettra}$ - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy — ⁶Institut für Photonik, Technische Universität Wien, Austria — ⁷Laboratory of Quantum Optics, University of Nova Gorica, Slovenia — ⁸Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy — ⁹Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Russia ¹⁰Graduate School of Engineering, The University of Tokyo, Japan ⁻¹¹Research Institute for Photon Science and Laser Technology, The University of Tokyo, Japan — ¹²European XFEL, Schenefeld, Germany — 13 Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Australia — 14 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

We investigated the coherent control of molecular photoionization by using phase-locked first and second harmonic radiation from the Free-Electron Laser FERMI. As in the case of atomic coherent control [1, 2], interference between single-photon and two-photon ionization of the valence electrons was observed, and was manifested as asymmetry in the photoelectron angular distributions. Oscillations of this asymmetry were observed as a function of the relative phase difference between the two wavelengths. In our recent experimental campaign, we used a gas mixture of molecular nitrogen and atomic neon, with the neon serving as a reference target. We impulsively aligned the nitrogen molecules in the cold molecular beam using infrared pulses, and measured the photoelectron angular distributions using a Velocity Map Imaging spectrometer. Here we present preliminary experimental results as well as preliminary results from theoretical calculations.

[1] K. C. Prince et al. Nat. Photonics 10, 176 (2016).

[2] D. You et al. Phys. Rev. X 10, 031070 (2020).

MO 1.2 Mon 10:45 MO-H5

Channel- and Full Angle-Resolved Strong-Field Ionization and Electron Rescattering Probabilities in the Molecular Frame — •Federico Branchi¹, Felix Schell¹, Tilmann Ehrlich¹, Mark Mero¹, Horst Rottke¹, Varun Makhija², Serguei Patchkovskii¹, Marc J. J. Vrakking¹, and Jochen Mikosch¹ — ¹Max-Born-Institut, Berlin, Germany — ²Univ. of Mary Washington, Fredericksburg, USA

By analyzing lab frame coherent rotational wavepacket evolution in a reaction microscope experiment [1] we measure the angle- and channel-resolved ionization and electron rescattering probabilities in the asymmetric-top molecule 1,3-butadiene. With this approach we achieve both polar and azimuthal angle-resolved molecular frame information, in contrast to previous works [2,3]. Location: MO-H5

Our results indicate that the nodal structure of the ionizing orbitals is more strongly reflected in the electron rescattering probability rather than in the ionization probability. The molecular frame electron rescattering probability is significantly influenced by structured, channel-specific continuum electron wavepackets. Experimental results are compared with results from a TD-RIS [4] ab-initio simulation.

- [1] Wang et al., Phys. Rev. A 96, 023424 (2017)
- [2] Mikosch et al., Phys. Rev. Lett. 110, 023004 (2013)
- [3] Schell et al., Sc. Adv. 4, 5 aap8148 (2018)
- [4] Spanner and Patchkovskii, Phys. Rev. A 80, 063411 (2009)

MO 1.3 Mon 11:00 MO-H5

quantum state control of chiral molecules — •JUHYEON LEE¹, JOHANNES BISCHOFF¹, ALICIA O. HERNANDEZ-CASTILLO¹, BORIS SARTAKOV^{1,2}, GERARD MEIJER¹, and SANDRA EIBENBERGER-ARIAS¹ — ¹Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin — ²Prokhorov General Physics Institute, Russian Academy of Science, Vavilovstreet 38, 119991, Moscow, Russia

Recently, the enantiomer-specific state transfer (ESST) method [1] was demonstrated using tailored microwave fields. This method allows to populate or depopulate a rotational state of a chosen enantiomer, providing a way of quantum-controlled chiral separation. Thus far, the transfer efficiency of ESST has been limited by thermal population of the energy levels participating in ESST [1,2] and by spatial degeneracy [3]. To address these prior limitations, we developed a new experimental scheme which increases the efficiency of ESST by over a factor of ten compared to previously reported values [4]. This scheme enables a quantitative comparison between experiment and theory for the transfer efficiency in the simplest ESST triangle which includes the absolute ground state level. Details of this scheme and experimental results will be discussed in the presentation.

- [1] S. Eibenberger, et al., Phys. Rev. Lett. 118, 123002 (2017)
- [2] P. Cristóbal, et al., Angew. Chem. Int. Ed. 56, 12512 (2017)
- [3] M. Leibscher, et al., arXiv:2010.09296 (2020)
- [4] J. H. Lee, et al., arXiv:2112.09058 (2021)

MO 1.4 Mon 11:15 MO-H5 Atom-molecule and molecule-molecule collisions in ultracold quantum gas mixtures of 39K atoms and rovibronic 23Na39K ground-state molecules — •PHILIPP GERSEMA¹, MARA MEYER ZUM ALTEN BORGLOH¹, KAI KONRAD VOGES¹, TORSTEN HARTMANN¹, LEON KARPA¹, ALESSANDRO ZENESINI², and SILKE OSPELKAUS¹ — ¹Leibniz Universität Hannover, Institut für Quantenoptik — ²Universita di Trento, Dipartimento di Fisica

Ultracold heteronuclear molecules enable the study of fascinating new physical phenomena in the quantum realm. These arise from the degrees of freedom of vibration and rotation and the large permanent dipole moment of heteronuclear molecules. However, especially for the investigation of novel phenomena in quantum many-body physics, a precise understanding of the collision properties of heteronuclear polar molecules is mandatory. Here we report on our experiments on collisions in pure quantum gases of bosonic NaK molecules and atom-molecule mixtures. We discuss photoinduced collisional processes and hyperfine dependent atom-molecule scattering and report on our progress towards photoassociation of weakly bound triatomic NaK2 molecules.