MS 1: Penning-Trap Mass Spectrometry

Time: Monday 14:00-16:00

Invited Talk MS 1.1 Mon 14:00 MS-H9 Direct high-precision measurement of the electron capture Q-value in ¹⁶³Ho for the determination of the effective electron neutrino mass — \bullet Christoph Schweiger¹, Martin Brass², Vincent Debierre¹, Menno Door¹, Holger Dorrer³, Christoph E. Düllmann^{3,4,5}, Sergey Eliseev¹, Christian Enss⁶, PAVEL FILIANIN¹, LOREDANA GASTALDO⁶, ZOLTAN HARMAN¹, MAU-RITS W. HAVERKORT², JOST HERKENHOFF¹, PAUL INDELICATO⁷, Christoph H. Keitel¹, Kathrin Kromer¹, Daniel Lange¹, Yuri N. Novikov^{8,9}, Dennis Renisch^{3,4}, Alexander Rischka¹, RIMA X. SCHÜSSLER¹, and KLAUS BLAUM¹ — ¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany — ²Institute for Theoretical Physics, Heidelberg University, Germany — ³Department Chemie -Standort TRIGA, Mainz University, Germany — 4 Helmholtz-Institut Mainz, Germany — ⁵GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany — ⁶Kirchhoff-Institute for Physics, Heidelberg University, Germany — $^7\mathrm{Laboratoire}$ Kastler Brossel, Sorbonne Université, Paris, France — 8 NRC "Kurchatov Institute"-Petersburg Nuclear Physics Institute, Gatchina, Russia — ⁹St. Petersburg State University, Petersburg, Russia

Among the most important quantities for fundamental physics is the effective mass of the electron neutrino m_{ν} , which has far-ranging consequences for cosmology and theories beyond the Standard Model. At present, the most precise indirect upper limit on m_{ν} is $<120 \text{ meV}/c^2$ resulting from astrophysical observations while the most precise direct limit is set by the KATRIN collaboration with $<0.8 \text{ meV}/c^2$, based on the kinematic study of the tritium β -decay. Complementary, the ECHo and HOLMES collaborations investigate the electron capture decay in ¹⁶³Ho using microcalorimeters. In order to reach the anticipated sub-eV limits on m_{ν} with calorimetric measurements, the exclusion of possible systematic uncertainties is crucial and is achieved by a comparison of the calorimetrically determined Q-value of the decay to an independently measured one with the same uncertainty level. Within this talk, an independent, direct, ultra-precise measurement of this Q-value using the Penning-trap mass spectrometer PENTATRAP is presented with a sub-eV uncertainty. Using this technique, the Q-value is determined by measuring the ratio of the free cyclotron frequencies of highly charged ions of the mother and daughter nuclides, the synthetic radioisotope 163 Ho and 163 Dy, respectively. The Q-value is finally determined from the measured ratio of cyclotron frequencies by including precise atomic physics calculations of the electronic binding energies of the missing electrons in the measured highly charged ions. This more than 40-fold improved Q-value compared to the previous best direct measurement paves the way for a sub-eV upper limit on m_{ν} within the ECHo and HOLMES collaborations.

MS 1.2 Mon 14:30 MS-H9

Plans and development of the gas-jet apparatus for laser spectroscopy of the heavy actinides at GSI/HIM — •DANNY MÜNZBERG^{1,2,3}, MICHAEL BLOCK^{1,2,3}, PREMADITYA CHHETRI⁴, ARNO CLAESSENS⁴, PIET VAN DUPPEN⁴, RAFAEL FERRER⁴, JEK-ABS ROMANS⁴, SANDRO KRAEMER⁴, JEREMY LANTIS³, MUSTAPHA LAATIAOUI³, STEVEN NOTHHELFER^{1,2,3}, SEBASTIAN RAEDER^{1,2}, MORITZ SCHLAICH⁵, LUTZ SCHWEIKHARD⁶, SIMON SELS⁴, THOMAS WALTHER⁵, and FRANK WIENHOLTZ⁵ — ¹GSI Helmholtz-Institut, Mainz, DE — ³Department Chemie, Johannes Gutenberg-Universität, Mainz, DE — ⁴Institut voo Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium — ⁵Technische Universität Darmstadt, DE — ⁶Universität Greifswald, DE

At GSI-Darmstadt we use the Radiation-Detected Resonance-Ionization Spectroscopy (RADRIS) technique, to study elements in the heavy actinide region to determine their basic nuclear and atomic properties. A setup combining the features of RADRIS with laser spectroscopy in a gas-jet is currently under development to minimize broadening mechanisms occuring in the gas environment of RADRIS, improving the spectral resolution by about an order of magnitude. Due to low production rates in these experiments it is important to minimize the background from other reaction or decay products. In addition, for long-lived nuclides a decay-based detection will not be feasible. With a multi-reflection time-of-flight mass seperator (MR-ToF MS) a separation of ions with different mass to charge ratio can

Location: MS-H9

be achieved with a high mass resolving power, suppressing background from unwanted species. For this reason an MR-ToF MS will be added to the gas-jet apparatus. A technical overview oft the MR-ToF MS will be given and its integration into the system will be discussed.

MS 1.3 Mon 14:45 MS-H9

Precision mass measurements of actinides at SHIPTRAP — •MANUEL J. GUTIÉRREZ^{1,2}, MICHAEL BLOCK^{1,2,3}, CHRISTOPH E. DÜLLMANN^{1,2,3}, FRANCESCA GIACOPPO^{1,2}, OLIVER KALEJA^{1,4}, KANIKA KANIKA^{1,5}, JACQUES J. W. VAN DE LAAR^{2,3}, YURY NECHIPORENKO^{6,7}, YURI NOVIKOV^{6,7}, WOLFGANG QUINT^{1,5}, and DENNIS RENISCH^{2,3} — ¹GSI Darmstadt, Germany — ²HIM Mainz, Germany — ³JGU Mainz, Germany — ⁴University of Greifswald, Germany — ⁵University of Heidelberg, Germany — ⁶PNPI Gatchina, Russia — ⁷Saint Petersburg State University, Russia

The existence of superheavy nuclides is possible due to quantummechanical shell effects. A region of enhanced stability, dubbed *island of stability*, was long ago predicted at the next spherical shell closure above the doubly magic ²⁰⁸Pb. Although not yet experimentally found, its location has been pinned down to around Z=114–126 and N=184. More information can be retrieved from the study of the actinides, linked to heavier nuclides by decay chains.

Penning-trap mass spectrometry provides precise measurements of atomic masses, which directly translate into binding energies. Their high-resolution measurement provides a powerful indicator of nuclear structure effects. An offline campaign for direct mass measurements of selected U and Pu isotopes was recently carried out at the SHIP-TRAP mass spectrometer at GSI, usually devoted to the investigation of superheavy elements. The campaign complements the more extensive program carried out at the TRIGA-TRAP setup in Mainz. This contribution presents the first results of the SHIPTRAP campaign.

MS 1.4 Mon 15:00 MS-H9

Status report on the TRIGA-Trap experiment — •STANISLAV CHENMAREV^{1,2}, KLAUS BLAUM¹, MICHAEL BLOCK^{3,4,5}, CHRISTOPH E. DÜLLMANN^{3,4,5}, STEFFEN LOHSE^{3,4}, SZILARD NAGY¹, and JACQUES J. W. VAN DE LAAR^{3,4} — ¹Max-Planck-Institut für Kernphysik, Heidelberg, DE — ²Petersburg Nuclear Physics Insitute, Gatchina, RU — ³Department Chemie - Standort TRIGA, Johannes Gutenberg-Universität Mainz, DE — ⁴Helmholtz-Institut Mainz, DE — ⁵GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, DE

The TRIGA-Trap setup [1] is a double Penning-trap mass spectrometer at the research reactor TRIGA Mainz. Currently we are performing high-precision mass measurements of long-lived transuranium isotopes. A new cylindrical measurement trap made possible the implementation of the phase-imaging ion cyclotron resonance (PI-ICR) technique [2], originally developed at SHIPTRAP. The current status including results for several long-lived actinide isotopes will be presented. Our results find application in nuclear structure studies and provide reliable atomic mass anchor points in the transuranium region.

J. Ketelaer *et al.*, Nucl. Instrum. Meth. A **594**, 162-177 (2008).
S. Eliseev *et al.*, Phys. Rev. Lett. **110**, 082501, (2013).

 $\begin{array}{c} {\rm MS~1.5} \quad {\rm Mon~15:15} \quad {\rm MS-H9} \\ {\rm Status~of~precision~mass~measurements~at~the~LIONTRAP} \\ {\rm experiment-} \bullet {\rm Sangeetha~Sasidharan^{1,2},~Olesia~Bezrodnova^1,} \\ {\rm Sascha~Rau^1,~Wolfgang~Quint^2,~Sven~Sturm^1,~and~Klaus} \\ {\rm BLaum^1-} {}^1{\rm MPIK,~Heidelberg,~Germany-} {}^2{\rm GSI~Helmholtzzentrum,} \\ {\rm Darmstadt,~Germany} \end{array}$

The LIONTRAP experiment is a high-precision mass spectrometer dedicated to light ions. The results at LIONTRAP include the atomic mass measurements of the proton [1], the deuteron and the HD⁺ molecular ion [2]. The deuteron mass was measured to a relative precision of 8.5 ppt [2]. Our results show an excellent agreement with values extracted from laser spectroscopy of HD⁺ [3] and the comparison is limited by the precision of the electron's atomic mass. The electron mass in atomic mass units (amu) is currently extracted from the bound electron g-factor measurement of $^{12}C^{5+}$ [4]. This could be improved in the future via a better measurement of the same as it has smaller theoretical uncertainties for the g-factor due to its lower

Z than ${}^{12}C^{5+}$ and also has a simpler nuclear structure. Currently, we are measuring the atomic mass of 4 He to support such a determination of the electron mass in amu. In this contribution, the present status of the experiment will be discussed.

- [1] F. Heiße et al., Phys. Rev. A 100, 022518 (2019).
- [2] S. Rau *et al.*, Nature 585, (2020) pp. 43-47.
- [3] I. V. Kortunov et al., Nature Physics, 17, (2021) pp. 569-573.
- [4] S. Sturm et al., Nature 506, (2014) pp. 467-470.

MS 1.6 Mon 15:30 MS-H9

Latest results of the high-precision Penning-trap mass spectrometer PENTATRAP — •M. DOOR¹, J. R. CRESPO LÓPEZ-URRUTIA¹, P. FILIANIN¹, J. HERKENHOFF¹, K. KROMER¹, D. LANGE¹, Y. NOVIKOV², A. RISCHKA¹, F. HERZOG¹, CH. SCHWEIGER¹, S. STURM¹, S. ULMER³, S. ELISEEV¹, and K. BLAUM¹ — ¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany — ²Peterburg Nuclear Physics Institute, Gatchina, Russia — ³RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan

Measurements with the Penning-trap mass spectrometer PENTATRAP [1], located at the Max-Planck-Institut für Kernphysik in Heidelberg, allow to determine mass ratios with a relative uncertainty in the few parts per trillion regime using highly charged ions [2]. PENTATRAP's mass measurements of selected nuclides allow, among others, to contribute to tests of special relativity, bound-state quantum electrodynamics and neutrino-physics research. Achieving this level of precision requires using a cryogenic image-current detection system with singleion sensitivity and phase-sensitive detection methods in combination with highly charged ions provided by external ion sources. The talk will present recent measurement results on neon for tests of boundstate quantum electrodynamics as well as medium heavy isotopes of ytterbium for dark matter search [3]. [1] Repp, J. et al., Appl. Phys. B 107, 983 (2012).

[2] Filianin, P. et al. Phys. Rev. Lett. 127, 072502 (2021).

[3] Counts, I. et al. Phys. Rev. Lett. 125, 123002 (2020).

 $MS~1.7 \quad Mon~15:45 \quad MS-H9 \\ \textbf{Towards a High-Precision Atomic Mass Measurement of the ³He and T Nuclei — •Olesia Bezrodnova¹, Sangeetha Sasidharan^{1,2}, Sascha Rau¹, Wolfgang Quint², Sven Sturm¹, and Klaus Blaum¹ — ¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany — ²GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany$

The mass difference of T and ³He nuclei, measured with the highest precision, will allow an important consistency check for the systematic uncertainty of an upper limit of the $m(\bar{\nu}_e)$ by the KATRIN project [1]. The most precise mass measurements of the lightest nuclei, including ³He nucleus, revealed considerable inconsistencies between the values reported by different experiments [2]. In order to provide an independent cross-check, LIONTRAP, a multi-Penning trap mass spectrometer, has carried out mass measurements on the proton [3], the deuteron and the HD⁺ molecular ion [4].

The present activities of the LIONTRAP group aim at ultra-precise mass measurements of the ³He and T nuclei with a relative uncertainty better than 5 ppt. In this contribution, I present the current status of the experiment, which includes the ³He source preparation for the upcoming mass measurement campaign and modifications of the experimental setup for the radioactive T source placement.

- [1] M. Aker et al. Phys. Rev. Lett. 123, 221802 (2019)
- [2] S. Hamzeloui et al. Phys. Rev. A 96, 060501(R) (2017)
- [3] F. Heiße *et al.* Phys. Rev. A **100**, 022518 (2019)
- [4]S. Rau $et\ al.$ Nature 585, 43-47 (2020)