
Regensburg 2022 – MM Thursday

MM 29: Data Driven Materials Science: Design of Functional Materials

Time: Thursday 10:15–11:30 Location: H45

MM 29.1 Thu 10:15 H45
Investigations of the Polysulfide Conversion Mechanism via
Gaussian Approximation Potentials — ∙Xu Han1,2, Carsten
G. Staacke1, Hendrik H. Heenen1, Xuefei Xu2, and Karsten
Reuter1 — 1Fritz-Haber-Institut der MPG, Berlin, Germany —
2Tsinghua University, Beijing, China
Lithium-sulfur (Li-S) batteries have been regarded as promising energy
storage systems with ultra-high theoretical energy density. During a
charging cycle Li2S is converted to S8 and vice-versa, where intermedi-
ate Li polysulfides (LiPS) are formed in a complex reaction mechanism
which is still under debate. The theoretical exploration of the involved
Li-S chemistry is challenged by an extended reaction network making
it intractable for first principles methods. In contrast, machine learn-
ing interatomic potentials (MLIPs) which potentially retain predictive
accuracy at a fraction of the computational cost are ideally suited for
this task.

Here, we establish a training protocol for a Gaussian approxima-
tion potential (GAP) to simulate the chemistry of LiPS. Our training
is based on a constrained on-the-fly exploration of the LiPS chemical
space. In that, we enumerate the connectivity of (poly)cyclic LiPS
and explore their stability via global optimization procedures with it-
eratively refined MLIPs. We use the final, sufficiently accurate MLIP
to sample the LiPS phase space and to compute charging/discharging
curves which we can directly compare to experimental data. Our MLIP
calculations are expected to provide more fundamental insights into the
LiPS conversion mechanism in Li-S batteries.

MM 29.2 Thu 10:30 H45
Accelerating the High-Throughput Search for new Thermal
Insulators with Symbolic Regression — ∙Thomas Purcell1,
Matthias Scheffler1,2, Luca M. Ghiringhelli1,2, and Christian
Carbogno1 — 1The NOMAD Laboratory at Fritz-Haber-Institut der
Max-Planck-Gesellschaft — 2FAIRmat at Humboldt Universität zu
Berlin, Berlin, Germany
Reliable artificial-intelligence models are key to accelerate the discov-
ery of new functional materials for various applications. Here, we
present a general, data-driven framework that combines symbolic re-
gression with sensitivity analysis to create hierarchical workflows. We
illustrate the power of this new framework by screening for new ther-
mally insulating materials. We first use the sure-independence screen-
ing and sparsifying operator (SISSO) [1] to build an analytical model
that describes the thermal conductivity of a material and then extract
out the most important input properties using a variance-based sensi-
tivity analysis [2]. Using the information gained from the analysis we
screen over a set of 732 materials and find the region of space most
likely to contain strong thermal insulators. Finally we confirm these
predictions by calculating thermal conductivities using the ab initio
Green-Kubo technique [3].
[1] R. Ouyang, et al.. Phys. Rev. Mat. 2, 083802 (2018)
[2] S. Kucherenko, S. Tarantola, and P. Annoni. Comput. Phys.
Commun. 183, 937 (2012)
[3] C. Carbogno, R. Ramprasad, and M. Scheffler. Phys. Rev. Lett.
118, 175901 (2017)

MM 29.3 Thu 10:45 H45
Uncertainty Modelling for Property Prediction of Double
Perovskites — ∙Simon Teshuva1, Mario Boley1, Felix Luong1,
Lucas Foppa2, and Matthias Scheffler2 — 1Monash University,
Melbourne, Australia — 2Fritz Haber Institute, Berlin, Germany
Statistical predictive models for double perovskite properties are of
high interest, because the perovskite structure allows relatively accu-
rate property prediction and at the same time provides enough flexi-
bility to yield a huge number of different materials of which some are

likely relevant for important applications. Existing results published
for this class of materials typically refer only to the predictive perfor-
mance as, e.g., measured by the root mean squared error. However,
active learning strategies for effective materials screening also rely on
adequate uncertainty estimates as provided by probabilistic models.

Here, we study the predictive performance of two popular machine
learning models, Gaussian processes and random forests, together with
the quality of their uncertainty estimates. This study is based on a
dataset of over 800 single (ABO_3) and double (A_2BB’O_6)cubic
perovskite oxides with computed bulk modulus, cohesive energy, and
bandgap. We show that Gaussian processes, while providing sound
Bayesian uncertainty estimates, can have inferior performance when
their assumption of isometric smoothness of the target property is not
met. In this case, as exemplified by the double perovskite bandgaps,
random forests provide a better alternative, despite their rather ad-hoc
uncertainty estimates. Improving these estimates thus appears to be
a promising direction for future research.

MM 29.4 Thu 11:00 H45
Automated effective Hamiltonian construction and active
sampling of potential energy surface by Bayseian optimiza-
tion — ∙Mian Dai, Yixuan Zhang, and Hongbin Zhang — Insti-
tute of Materials Science, Technical University of Darmstadt, Darm-
stadt, 64287, Germany
A first-principles effective Hamiltonian method can be used to simulate
the phase transition sequences. In practice it is quite tedious to ex-
press the total energy surfaces and estimate reasonable parameters for
high-order polynomials. We implemented Bayesian optimization (BO)
to sample the total energy surfaces based on active learning and fit the
set of parameters for constructing the effective Hamiltonians. Taking
BaTiO3 as a case study, we found that less than 30 sampling config-
urations with automated generated structures by BO are enough to
determine a new set of parameters. The hyperparater in our BO pro-
cess is tuned to show the improvement of the convergence for all fitted
parameters. Using the new set of parameters, we perform Monte Carlo
simulations which produce comparable phase transition temepratures
with experimental values and previous results. Our BO algorithm has
a great potential for future application in construction the effective
Hamiltonians with more complicated subspace and effective atomic
potentials describing the full lattice dynamics.

MM 29.5 Thu 11:15 H45
Predicting oxidation and spin states by high-dimensional neu-
ral networks — ∙Knut Nikolas Lausch1, Marco Eckhoff1, Pe-
ter Blöchl2, and Jörg Behler1 — 1Georg-August-Universität Göt-
tingen, Institut für Physikalische Chemie, Theoretische Chemie, Göt-
tingen, Germany — 2Technische Universität Clausthal, Institut für
Theoretische Physik, Clausthal-Zellerfeld, Germany
Machine learning potentials (MLP) such as high-dimensional neural
network potentials (HDNNP) provide first-principles quality energies
and forces enabling large-scale molecular dynamics simulations at low
computational costs. However, most current MLPs do not provide
any information about the electronic structure of the system, which
is often important for a detailed understanding of complex systems
such as transition metal oxides. The lithium intercalation compound
Li𝑥Mn2O4 (0 ≤ 𝑥 ≤ 2), a commercially used cathode material in
lithium ion batteries, is such a system since the manganese ions adopt
different oxidation states based on the lithium content and distribu-
tion. Here, we propose a high-dimensional neural network (HDNN)
that can predict atomic oxidation and spin states as a function of the
local atomic environments in Li𝑥Mn2O4. The HDNN can complement
HDNNP-driven MD simulations giving insights into the underlying
electronic processes that give rise to complex phenomena such as a
charge ordering transition, and electrical conductance.
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